Advanced Machine Learning
Summer 2019

Part 5 – Deep Reinforcement Learning
17.04.2019

Jonathon Luiten

Prof. Dr. Bastian Leibe

RWTH Aachen University, Computer Vision Group
http://www.vision.rwth-aachen.de
Course Outline

• Regression Techniques
 – Linear Regression
 – Regularization (Ridge, Lasso)
 – Kernels (Kernel Ridge Regression)

• Deep Reinforcement Learning

• Probabilistic Graphical Models
 – Bayesian Networks
 – Markov Random Fields
 – Inference (exact & approximate)

• Deep Generative Models
 – Generative Adversarial Networks
 – Variational Autoencoders
Topics of These Lectures

• **Reinforcement Learning**
 – Introduction
 – Key Concepts
 – Optimal policies
 – Exploration-exploitation trade-off

• **Temporal Difference Learning**
 – SARSA
 – Q-Learning

• **Deep Reinforcement Learning**
 – Value based Deep RL
 – Policy based Deep RL
 – Model based Deep RL

• Applications
What is Reinforcement Learning?

• **Learning how to act** from a **reinforcement** signal.

• Humans do this too.

• And it works: Atari games, Alpha Go, Dota2/Starcraft, Drone Control, Robot Arm Manipulation, etc.
Reinforcement Learning

• Motivation
 – General purpose framework for decision making.
 – Basis: Agent with the capability to interact with its environment
 – Each action influences the agent’s future state.
 – Success is measured by a scalar reward signal.
 – Goal: select actions to maximize future rewards.

– Formalized as a partially observable Markov decision process (POMDP)

Slide adapted from: David Silver, Sergey Levine
Reinforcement Learning

• Differences to other ML paradigms
 – There is no supervisor, just a reward signal
 – Feedback is delayed, not instantaneous
 – Time really matters (sequential, non i.i.d. data)
 – Agent’s actions affect the subsequent data it receives

⇒ *We don’t have full access to the function we’re trying to optimize, but must query it through interaction.*
The Agent–Environment Interface

Let’s formalize this

- Agent and environment interact at discrete time steps $t = 0, 1, 2, ...$
- Agent observes state at time t: $S_t \in S$
- Produces an action at time t: $A_t \in \mathcal{A}(S_t)$
- Gets a resulting reward $R_{t+1} \in \mathcal{R} \subseteq \mathbb{R}$
- And a resulting next state: S_{t+1}
Note about Rewards

• Reward
 – At each time step t, the agent receives a reward R_{t+1}
 – This is the training signal
 – Provides a measure for the consequences of actions
 – Reward may be obtained only after a long sequence of actions
 – Goal: choose actions to maximize future accumulated reward.

• Important note
 – We need to provide those rewards to truly indicate what we want the agent to accomplish.
 – E.g., learning to play chess:
 ▪ The agent should only be rewarded for winning the game.
 ▪ Not for taking the opponent’s pieces or other subgoals.
 ▪ Else, the agent might learn a way to achieve the subgoals without achieving the real goal.

⇒ This means, non-zero rewards will typically be very rare!
Reward vs. Return

• Objective of learning
 – We seek to maximize the expected return G_t as some function of the reward sequence $R_{t+1}, R_{t+2}, R_{t+3}, ...$
 – Standard choice: expected discounted return

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + ... = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

where $0 \leq \gamma \leq 1$ is called the discount rate.

• Difficulty
 – We don’t know which past actions caused the reward.
 ⇒ Temporal credit assignment problem
Markov Decision Process (MDP)

• Markov Decision Processes
 – We consider decision processes that fulfill the Markov property.
 – I.e., where the environments response at time t depends only on the state and action representation at t.

• To define an MDP, we need to specify
 – State and action sets
 – One-step dynamics defined by state transition probabilities

$$p(s'|s, a) = \Pr\{S_{t+1} = s'|S_t = s, A_t = a\} = \sum_{r \in \mathcal{R}} p(s', r|s, a)$$

 – Expected rewards for next state-action-next-state triplets

$$r(s, a, s') = \mathbb{E}[R_{t+1} | S_t = s, A_t = a, S_{t+1} = s'] = \frac{\sum_{r \in \mathcal{R}} r \cdot p(s', r|s, a)}{p(s'|s, a)}$$
Policy

• Definition
 – A policy determines the agent’s behavior
 – Map from state to action \(\pi: S \rightarrow A \)

• Two types of policies
 – Deterministic policy: \(a = \pi(s) \)
 – Stochastic policy: \(\pi(a|s) = \Pr\{A_t = a|S_t = s\} \)

• Note
 – \(\pi(a|s) \) denotes the probability of taking action \(a \) when in state \(s \).
Value Function

• Idea
 – Value function is a prediction of future reward
 – Used to evaluate the goodness/badness of states
 – And thus to select between actions

• Definition
 – The value of a state \(s \) under a policy \(\pi \), denoted \(v_\pi(s) \), is the expected return when starting in \(s \) and following \(\pi \) thereafter.
 \[
 v_\pi(s) = \mathbb{E}_\pi [G_t | S_t = s] = \mathbb{E}_\pi [\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s]
 \]
 – The value of taking action \(a \) in state \(s \) under a policy \(\pi \), denoted \(q_\pi(s, a) \), is the expected return starting from \(s \), taking action \(a \), and following \(\pi \) thereafter.
 \[
 q_\pi(s, a) = \mathbb{E}_\pi [G_t | S_t = s, A_t = a] = \mathbb{E}_\pi [\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s, A_t = a]
 \]
Bellman Equation

- Recursive Relationship
 - For any policy π and any state s, the following consistency holds
 \[v_\pi(s) = \mathbb{E}_\pi[G_t | S_t = s] \]
 \[= \mathbb{E}_\pi \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s \right] \]
 \[= \mathbb{E}_\pi \left[R_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^k R_{t+k+2} | S_t = s \right] \]
 \[= \sum_a \pi(a | s) \sum_{s'} \sum_r p(s', r | s, a) \left[r + \gamma \mathbb{E}_\pi \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+2} | S_{t+1} = s' \right] \right] \]
 \[= \sum_a \pi(a | s) \sum_{s', r} p(s', r | s, a) [r + \gamma v_\pi(s')], \quad \forall s \in S \]
 - This is the Bellman equation for $v_\pi(s)$.
Bellman Equation

\[v_\pi(s) = \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a)[r + \gamma v_\pi(s')], \quad \forall s \in S \]

• Interpretation
 – Think of looking ahead from a state to each successor state.

 – The Bellman equation states that the value of the start state must equal the (discounted) value of the expected next state, plus the reward expected along the way.
 – We will use this equation in various forms to learn \(v_\pi(s) \).
Optimal Value Functions

• For finite MDPs, policies can be partially ordered
 – There will always be at least one optimal policy π^*.
 – The optimal state-value function is defined as $v^*(s) = \max_{\pi} v_{\pi}(s)$
 – The optimal action-value function is defined as $q^*(s, a) = \max_{\pi} q_{\pi}(s, a)$
Optimal Value Functions

• Bellman optimality equations
 – For the optimal state-value function v_*:

 $$v_*(s) = \max_{a \in A(s)} q_{\pi_*}(s, a)$$

 $$= \max_{a \in A(s)} \sum_{s', r} p(s', r | s, a) [r + \gamma v_*(s')]$$

 – v_* is the unique solution to this system of nonlinear equations.

 – For the optimal action-value function $q_*:

 $$q_*(s, a) = \sum_{s', r} p(s', r | s, a) \left[r + \gamma \max_{a'} q_*(s', a') \right]$$

 – q_* is the unique solution to this system of nonlinear equations.

 ⇒ If the dynamics of the environment $p(s', r | s, a)$ are known, then in principle one can solve those equation systems.
Optimal Policies

• Why optimal state-value functions are useful
 – Any policy that is greedy w.r.t. \(v_* \) is an optimal policy.
 \[v_*(s) = \max_{a \in A(s)} q_*(s, a) \]
 \[\Rightarrow \] Given \(v_* \), one-step-ahead search produces the long-term optimal results.

 \[\Rightarrow \] Given \(q_* \), we do not even have to do one-step-ahead search

• Challenge
 – Many interesting problems have too many states for solving \(v_* \).
 – Many Reinforcement Learning methods can be understood as approximately solving the Bellman optimality equations, using actually observed transitions instead of the ideal ones.
Example

Let’s assume the following MDP

- 4 actions: up, down, left, right
- Deterministic state transitions on actions, but
 - Move from A / B transitions to A' / B' respectively
 - Move into border of the grid moves back to current location
- Reward:
 - -1 for moving into border of the grid
 - +10 / +5 after transition from A / B respectively

Figure source: Sutton and Barto, 2012
Policy 1

- Value function for a policy that takes each action with equal probability ($\gamma = 0.9$)

![Diagram showing a grid with actions and reward values](image)

Figure source: Sutton and Barto, 2012
Policy 2

- Optimal value function and policy for the grid world

Figure source: Sutton and Barto, 2012
Tabular vs. Approximate methods

• For problems with small discrete state and action spaces:
 – Value function or Policy function can be expressed as a table of values.
• If we cannot enumerate our states or actions we use function approximation.
 – Kernel methods
 – Deep Learning / Neural Networks
• Want to solve large problems with huge state spaces, e.g. chess: 10^{120} states.
• Tabular methods don’t scale well - they’re a lookup table
 – Too many states to store in memory
 – Too slow to learn value function for every state/state-action.
Model-based vs Model-free

• Model-based
 – Has a model of the environment dynamics and reward
 – Allows agent to plan: predict state and reward before taking action
 – Pro: Better sample efficiency
 – Con: Agent only as good as the environment - Model-bias

• Model-free
 – No explicit model of the environment dynamics and reward
 – Less structured. More popular and further developed and tested.
 – Pro: Can be easier to implement and tune
 – Cons: Very sample inefficient
Value-based RL vs Policy-based RL

- RL methods can directly estimate a policy: **Policy Based**
 - A direct mapping of what action to take in each state.
 - \(\pi(a|s) = P(a|s, \theta) \)

- RL methods can estimate a value function and derive a policy from that: **Value Based**
 - Either a state-value function
 - \(\hat{V}(s; \theta) \approx V^\pi(s) \)
 - Or an action-state value function (q function)
 - \(\hat{Q}(s, a; \theta) \approx Q^\pi(s, a) \)

- Or both simultaneously: **Actor-Critic**
 - Actor-Critic methods learn both a policy (actor) and a value function (critic)
Taxonomy of RL methods

RL Algorithms

Model-Free
- Policy Gradient
 - VPG
 - A2C
- Value Function
 - DQN

Model-Based
- Learn the Model
 - World Models
- Given the Model
 - AlphaZero
Exploration-Exploitation Trade-off

- Example: N-armed bandit problem
 - Suppose we have the choice between N actions a_1, \ldots, a_N.
 - If we knew their value functions $q^*(s, a_i)$, it would be trivial to choose the best.
 - However, we only have estimates based on our previous actions and their returns.

- We can now
 - **Exploit** our current knowledge
 - And choose the greedy action that has the highest value based on our current estimate.
 - **Explore** to gain additional knowledge
 - And choose a non-greedy action to improve our estimate of that action’s value.
Simple Action Selection Strategies

• \(\epsilon \)-greedy
 – Select the greedy action with probability \((1 - \epsilon)\) and a random one in the remaining cases.
 \(\Rightarrow \) In the limit, every action will be sampled infinitely often.
 \(\Rightarrow \) Probability of selecting the optimal action becomes \(> (1 - \epsilon) \).
 – But: many bad actions are chosen along the way.

• Softmax
 – Choose action \(a_i \) at time \(t \) according to the softmax function
 \[
 \frac{e^{q_t(a_i)/\tau}}{\sum_{j=1}^{N} e^{q_t(a_j)/\tau}}
 \]
 where \(\tau \) is a temperature parameter (start high, then lower it).
 – Generalization: replace \(q_t \) by a preference function \(H_t \) that is learned by stochastic gradient ascent (“gradient bandit”).
On-Policy vs. Off-Policy

• On-policy methods
 – Attempt to evaluate or improve the policy used to make decisions.
 – “Learn while on the job”

• Off-policy methods
 – Policy used to generate behavior (behavior policy) is unrelated to the policy that is evaluated and improved (estimation policy)
 – Can we learn the value function of a policy given only experience “off” the policy?
 – “Learn while looking over someone else’s shoulder”
Topics of These Lectures

• Reinforcement Learning
 – Introduction
 – Key Concepts
 – Optimal policies
 – Exploration-exploitation trade-off

• Temporal Difference Learning
 – SARSA
 – Q-Learning

• Deep Reinforcement Learning
 – Value based Deep RL
 – Policy based Deep RL
 – Model based Deep RL

• Applications
Policy Evaluation

• Policy evaluation (the prediction problem)
 – How good is a given policy?
 – For a given policy \(\pi \), compute the state-value function \(v_\pi \).
 – Once we know how good a policy is, we can use this information to improve the policy

• If we know the model:
 \[
 V^\pi_{k+1}(s_t) = \sum_{a_t} \pi(a_t \mid s_t) \sum_{s_{t+1}} p(s_{t+1} \mid s_t, a_t) \left(r(s_t, a_t, s_{t+1}) + \gamma V^\pi_k(s_{t+1}) \right)
 \]
 – This can be shown to converge to the actual \(V^\pi \) as \(K \to \infty \)
Policy Evaluation

- If we do not know the model, then we have to approximate it using observations
- One option: Monte-Carlo methods
 - Play through a sequence of actions until a reward is reached, then backpropagate it to the states on the path.
 - Update after whole sequence (episodic)
 \[V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)] \] Target: the actual return after time \(t \)
- Or: Temporal Difference Learning (TD Learning) – TD(\(\lambda \))
 - Directly perform an update using the estimate \(V(S_{t+\lambda+1}) \).
 - Bootstraps the current estimate of the value function
 - Can update every step
 \[V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)] \] Target: an estimate of the return (here: TD(0))
SARSA: On-Policy TD Control

• Idea
 – Turn the TD idea into a control method by always updating the policy to be greedy w.r.t. the current estimate

• Procedure
 – Estimate \(q_\pi(s, a) \) for the current policy \(\pi \) and for all states \(s \) and actions \(a \).
 – TD(0) update equation
 \[
 Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]
 \]
 – This rule is applied after every transition from a nonterminal state \(S_t \).
 – It uses every element of the quintuple \((S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1}) \).
 \(\Rightarrow \) **Hence, the name SARSA.**
SARSA: On-Policy TD Control

- Algorithm

Initialize $Q(s, a)$ arbitrarily
Repeat (for each episode):
 Initialize s
 Choose a from s using policy derived from Q (e.g., ε-greedy)
 Repeat (for each step of episode):
 Take action a, observe r, s'
 Choose a' from s' using policy derived from Q (e.g., ε-greedy)
 $Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma Q(s', a') - Q(s, a)]$
 $s \leftarrow s'; a \leftarrow a'$
 until s is terminal

Image source: Sutton & Barto
Q-Learning: Off-Policy TD Control

• Idea
 – Directly approximate the optimal action-value function q_*, independent of the policy being followed.

• Procedure
 – TD(0) update equation

 $$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

 – Dramatically simplifies the analysis of the algorithm.
 – All that is required for correct convergence is that all pairs continue to be updated.
Q-Learning: Off-Policy TD Control

• Algorithm

\[
\begin{align*}
&\text{Initialize } Q(s, a) \text{ arbitrarily} \\
&\text{Repeat (for each episode):} \\
&\quad \text{Initialize } s \\
&\quad \text{Repeat (for each step of episode):} \\
&\quad \quad \text{Choose } a \text{ from } s \text{ using policy derived from } Q \text{ (e.g., } \varepsilon\text{-greedy)} \\
&\quad \quad \text{Take action } a, \text{ observe } r, s' \\
&\quad \quad Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma \max_{a'} Q(s', a') - Q(s, a)] \\
&\quad \quad s \leftarrow s' \\
&\quad \text{until } s \text{ is terminal}
\end{align*}
\]
References and Further Reading

• More information on Reinforcement Learning can be found in the following book

Richard S. Sutton, Andrew G. Barto
Reinforcement Learning: An Introduction
MIT Press, 1998

• The complete text is also freely available online

References and Further Reading

- DQN paper
 - www.nature.com/articles/nature14236

- AlphaGo paper
 - www.nature.com/articles/nature16961