Course Outline

- Regression Techniques
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Kernels (Kernel Ridge Regression)
- Deep Reinforcement Learning
- Probabilistic Graphical Models
 - Bayesian Networks
 - Markov Random Fields
 - Inference (exact & approximate)
- Deep Generative Models
 - Generative Adversarial Networks
 - Variational Autoencoders

Topics of This Lecture

- Approximate Inference
 - Variational methods
 - Sampling approaches
- Sampling approaches
 - Sampling from a distribution
 - Ancestral Sampling
 - Rejection Sampling
 - Importance Sampling
- Markov Chain Monte Carlo
 - Markov Chains
 - Metropolis Algorithm
 - Metropolis-Hastings Algorithm
 - Gibbs Sampling

Approximate Inference

- Exact Bayesian inference is often intractable.
 - Often infeasible to evaluate the posterior distribution or to compute expectations w.r.t. the distribution.
 - E.g. because the dimensionality of the latent space is too high.
 - Or because the posterior distribution has a too complex form.
- Problems with continuous variables
 - Required integrations may not have closed-form solutions.
- Problems with discrete variables
 - Marginalization involves summing over all possible configurations of the hidden variables.
 - There may be exponentially many such states.

⇒ We need to resort to approximation schemes.

Two Classes of Approximation Schemes

- Deterministic approximations (Variational methods)
 - Based on analytical approximations to the posterior distribution
 - E.g. by assuming that it factorizes in a certain form
 - Or that it has a certain parametric form (e.g., a Gaussian).
 - Can never generate exact results, but are often scalable to large applications.
- Stochastic approximations (Sampling methods)
 - Given infinite computational resources, they can generate exact results.
 - Approximation arises from the use of a finite amount of processor time.
 - Enable the use of Bayesian techniques across many domains.
 - But: computationally demanding, often limited to small-scale problems.
In general, assume we are given the pdf \(p(x) \) and the corresponding cumulative distribution:
\[
F(x) = \int_{-\infty}^{x} p(z)dz
\]

- To draw samples from this pdf, we can invert the cumulative distribution function:
\[
u \sim Uniform(0, 1) \Rightarrow F^{-1}(u) \sim p(x)
\]

Example 1: Sampling from Exponential Distrib.

- **Exponential Distribution**

\[
p(y) = \lambda \exp(-\lambda y)
\]

where \(0 \leq y < \infty \).

- **Transformation sampling**

 - Indefinite Integral

 \[
h(y) = 1 - \exp(-\lambda y)
\]

 - Inverse function

\[
y = h(y)^{-1} = -\lambda^{-1} \ln(1-z)
\]

for a uniformly distributed input variable \(z \).
• Cauchy Distribution
 \[p(y) = \frac{1}{\pi (1 + y^2)} \]

• Transformation sampling
 Inverse of integral can be expressed as a \(\tan \) function.
 \[y = h(y)^{-1} = \tan(z) \]
 for a uniformly distributed input variable \(z \).

Example 2: Sampling from Cauchy Distrib.

Note: Efficient Sampling from a Gaussian

• Problem with transformation method
 – Integral over Gaussian cannot be expressed in analytical form.
 – Standard transformation approach is very inefficient.

• More efficient: Box-Muller Algorithm
 – Generate pairs of uniformly distributed random numbers \(z_1, z_2 \in (-1,1) \).
 – Discard each pair unless it satisfies \(r^2 = z_1^2 + z_2^2 \leq 1 \).
 – This leads to a uniform distribution of points inside the unit circle with \(p(z_1, z_2) = 1/\pi \).

Box-Muller Algorithm (cont’d)

• Box-Muller Algorithm (cont’d)
 \[r^2 = z_1^2 + z_2^2 \]
 – For each pair \(z_1, z_2 \), evaluate
 \[y_1 = z_1 \left(-\frac{2 \ln r^2}{r^2} \right)^{1/2} \]
 \[y_2 = z_2 \left(-\frac{2 \ln r^2}{r^2} \right)^{1/2} \]
 – Then the joint distribution of \(y_1 \) and \(y_2 \) is given by
 \[p(y_1, y_2) = \frac{\partial (z_1, z_2)}{\partial (y_1, y_2)} \]
 \[= \left[\frac{1}{\sqrt{2\pi}} \exp(-y_1^2/2) \right] \left[\frac{1}{\sqrt{2\pi}} \exp(-y_2^2/2) \right] \]
 \(\Rightarrow y_1 \) and \(y_2 \) are independent and each has a Gaussian distribution
 with mean \(\mu \) and variance \(\sigma^2 \).
 – If \(y \sim N(0,1) \), then \(\sigma y + \mu \sim N(\mu, \sigma^2) \).

Box-Muller Algorithm (cont’d)

• Multivariate extension
 – If \(x \) is a vector valued random variable whose components
 are independent and Gaussian distributed with \(N(0,1) \),
 – Then \(y = \mu + L z \) will have mean \(\mu \) and covariance \(\Sigma \).
 – Where \(\Sigma = L L^T \) is the Cholesky decomposition of \(\Sigma \).

General Advice

• Use library functions whenever possible
 – Many efficient algorithms available for
 known univariate distributions
 (and some other special cases)
 – This book (free online) explains how some of them work
 – http://www.nrbook.com/devroye/

Ancestral Sampling

• Generalization of this idea to directed graphical models.
 – Joint probability factorizes into conditional probabilities:
 \[p(x) = \prod_{k=1}^{K} p(x_k | p_{a_k}) \]

• Ancestral sampling
 – Assume the variables are ordered such that there are no links from
 any node to a lower-numbered node.
 – Start with lowest-numbered node and draw a sample from its distribution.
 \[\hat{x}_1 \sim p(x_1) \]
 – Cycle through each of the nodes in order and draw samples from the conditional distribution
 (where the parent variable is set to its sampled value):
 \[\hat{x}_n \sim p(x_n | p_{a_n}) \]
Approximate Inference I

Obviously we need some simpler distribution than the one in question.

\[\mathcal{I} \]

Schiele dimensions are generated from the distribution \(\mathcal{I} \) from the transformation method. The remaining pairs \((u, z_i)\) have uniform distribution over the curve \(\int p(z) \).

Discussion

- Transformation method
 - Limited applicability, as we need to invert the indefinite integral of the required distribution \(p(x) \).
 - This will only be feasible for a limited number of simple distributions.
- More general
 - Rejection Sampling
 - Importance Sampling

Rejection Sampling

- Assumptions
 - Sampling directly from \(p(x) \) is difficult.
 - But we can easily evaluate \(p(x) \) up to some normalization factor \(Z_p \):
 \[p(x) = \frac{1}{Z_p} f(x) \]
- Idea
 - We need some simpler distribution \(q(x) \) (called proposal distribution) from which we can draw samples.
 - Choose a constant \(k \) such that:
 \[\forall x : kq(x) \geq p(x) \]

Rejection Sampling – Discussion

- Limitation: high-dimensional spaces
 - For rejection sampling to be of practical value, we require that \(kq(x) \) be close to the required distribution, so that the rate of rejection is minimal.
- Artificial example
 - Assume that \(p(x) \) is Gaussian with covariance matrix \(\sigma_x^2 I \)
 - Assume that \(q(x) \) is Gaussian with covariance matrix \(\sigma_q^2 I \)
 - Obviously: \(\sigma_x^2 \geq \sigma_q^2 \)
 - In \(D \) dimensions: \(k = (\sigma_q / \sigma_x)^D \).
 - Assume \(\sigma_x \) is just 1% larger than \(\sigma_q \).
 - \(D = 1000 \Rightarrow k = 1.01^{1000} \approx 20,000 \)
 - And \(p(\text{accept}) < \frac{1}{10000} \)

\[\Rightarrow \text{Impractical to find good proposal distributions for high dimensions!} \]

Example: Sampling from a Gamma Distribution.

- Gamma distribution
 \[\Gamma(a,b) = \frac{1}{\Gamma(a)} b^a \text{e}^{-b} \exp(-bx) \quad a > 1 \]
- Rejection sampling approach
 - For \(a > 1 \), Gamma distribution has a bell-shaped form.
 - Suitable proposal distribution is Cauchy (for which we can use the transformation method).
 - Generalize Cauchy slightly to ensure it is nowhere smaller than Gamma: \(y = b \tan(\theta + c) \) for uniform \(\theta \).
 - This gives random numbers distributed according to \(q(z) \) with optimal rejection rate for
 \[c = \sigma - 1 \]
 \[b^2 = 2a - 1 \]
Evaluating Expectations

- **Motivation**
 - Often, our goal is not sampling from \(p(x) \) by itself, but to evaluate expectations of the form
 \[
 \mathbb{E}[f] = \int f(x)p(x)dx
 \]
- **Simplistic strategy: Grid sampling**
 - Discretize \(x \)-space into a uniform grid.
 - Evaluate the integrand as a sum of the form
 \[
 \mathbb{E}[f] \approx \frac{1}{L} \sum_{l=1}^{L} f(x^{(l)})
 \]
 - Problem: number of terms grows exponentially with number of dimensions!

Importance Sampling

- **Typical setting:**
 - \(p(x) \) can only be evaluated up to an unknown normalization constant
 \(p(x) = \tilde{p}(x)/Z_p \)
 - \(q(x) \) can also be treated in a similar fashion.
 \(q(x) = \tilde{q}(x)/Z_q \)
 - Then
 \[
 \mathbb{E}[f] = \int f(x)p(x)dx = \frac{Z_q}{Z_p} \int f(x)\frac{\tilde{p}(x)}{\tilde{q}(x)}q(x)dx
 \]
 \[
 \approx \frac{Z_q}{Z_p} \sum_{l=1}^{L} \tilde{r}_l f(x^{(l)})
 \]
 - with:
 \[
 \tilde{r}_l = \frac{\tilde{p}(x^{(l)})}{\tilde{q}(x^{(l)})}
 \]

Importance Sampling – Discussion

- **Observations**
 - Success of importance sampling depends crucially on how well the sampling distribution \(q(x) \) matches the desired distribution \(p(x) \).
 - Often, \(p(x)/f(x) \) is strongly varying and has a significant proportion of its mass concentrated over small regions of \(x \)-space.
 - Weights \(\tilde{r}_l \) may be dominated by a few weights having large values.
 - Practical issue: if none of the samples falls in the regions where \(p(x)/f(x) \) is large...
 - The results may be ambiguous in error.
 - And there will be no diagnostic indication (no large variance in \(\tilde{r}_l \)).
 - Key requirement for sampling distribution \(q(x) \):
 - Should not be small or zero in regions where \(p(x) \) is significant!

Importance Sampling

- **Idea**
 - Use a proposal distribution \(q(x) \) from which it is easy to draw samples.
 - Express expectations in the form of a finite sum over samples \(\{x^{(l)}\} \) drawn from \(q(x) \).
 \[
 \mathbb{E}[f] = \int f(x)p(x)dx = \int f(x)\frac{\tilde{p}(x)}{\tilde{q}(x)}q(x)dx
 \]
 \[
 \approx \frac{1}{L} \sum_{l=1}^{L} \frac{\tilde{p}(x^{(l)})}{\tilde{q}(x^{(l)})} f(x^{(l)})
 \]
 - with importance weights
 \[
 \tilde{r}_l = \frac{\tilde{p}(x^{(l)})}{\tilde{q}(x^{(l)})}
 \]
 - Result
 - The resulting \(L \) samples \(x^{(1)}, \ldots, x^{(L)} \) are only approximately distributed according to \(p(x) \), but the distribution becomes correct in the limit \(L \to \infty \).

Sampling-Importance-Resampling

- **Two stages**
 - Draw \(L \) samples \(x^{(1)}, \ldots, x^{(L)} \) from \(q(x) \).
 - Construct weights using importance weighting
 \[
 w_l = \frac{\tilde{r}_l}{\sum_{m} \tilde{r}_m} = \frac{\tilde{p}(x^{(l)})}{\sum_{m} \tilde{p}(x^{(m)})}
 \]
 and draw a second set of samples \(x^{(1)}', \ldots, x^{(L)}' \) with probabilities given by the weights \(w^{(1)}', \ldots, w^{(L)}' \).

- **Result**
 - The resulting \(L \) samples are only approximately distributed according to \(p(x) \), but the distribution becomes correct in the limit \(L \to \infty \).
However, for many problems of practical interest, it is difficult or impossible to find $q(x)$ with the necessary properties. The proposal distribution depends on the current state: $q(z^t|z^{t-1})$. This is in contrast to rejection sampling, where rejected samples are simply discarded.

Topics of This Lecture

- Approximate Inference
 - Variational methods
 - Sampling approaches
- Sampling approaches
 - Sampling from a distribution
 - Ancestral Sampling
 - Rejection Sampling
 - Importance Sampling
- Markov Chain Monte Carlo
 - Markov Chains
 - Metropolis Algorithm
 - Metropolis-Hastings Algorithm
 - Gibbs Sampling

Curve of Dimensionality

- **Problem**
 - Rejection & Importance Sampling both scale badly with high dimensionality.
 - Example:
 $$p(x) \sim N(0, I), \quad q(x) \sim N(0, \sigma^2 I)$$
- **Rejection Sampling**
 - Requires $\sigma \geq 1$. Fraction of proposals accepted: σ^{-1}.
- **Importance Sampling**
 - Variance of importance weights:
 $$\left(\frac{\sigma^2}{2 - 1/\sigma^2}\right)^{1/2} - 1$$
 - Infinite / undefined variance if $\sigma \leq 1/\sqrt{2}$

Independent Sampling vs. Markov Chains

- **So far**
 - We’ve considered two methods, Rejection Sampling and Importance Sampling, which were both based on independent samples from $q(x)$.
 - However, for many problems of practical interest, it is difficult or impossible to find $q(x)$ with the necessary properties.
 - **Different approach**
 - We abandon the idea of independent sampling.
 - Instead, rely on a Markov Chain to generate dependent samples from the target distribution.
 - **Independence** would be a nice thing, but it is not necessary for the Monte Carlo estimate to be valid.

MCMC – Markov Chain Monte Carlo

- **Overview**
 - Allows to sample from a large class of distributions.
 - Scales well with the dimensionality of the sample space.
- **Idea**
 - We maintain a record of the current state z^{t-1}
 - The proposal distribution depends on the current state: $q(z^t|z^{t-1})$
 - The sequence of samples forms a Markov chain $z^{(1)}, z^{(2)}, \ldots$
- **Setting**
 - We can evaluate $p(x)$ (up to some normalizing factor Z_0):
 $$p(x) = \frac{p(x)}{Z_0}$$
 - At each time step, we generate a candidate sample from the proposal distribution and accept the sample according to a criterion.

MCMC – Metropolis Algorithm

- **Metropolis algorithm** ([Metropolis et al., 1953])
 - Proposal distribution is symmetric: $q(z_{t+1}|z_t) = q(z_t|z_{t+1})$
 - The new candidate sample z' is accepted with probability
 $$A(z^t, z'^{(t)}) = \min\left(1, \frac{p(z')}{p(z^t)}\right)$$
- **Implementation**
 - Choose random number u uniformly from unit interval $(0, 1)$.
 - Accept sample if $A(z^t, z'^{(t)}) > u$
- **Note**
 - New candidate samples always accepted if $p(z') \geq p(z^{(t)})$.
 - I.e. when new sample has higher probability than the previous one.
 - The algorithm sometimes accepts a state with lower probability.

- **Two cases**
 - If new sample is accepted: $z^{(t+1)} = z'$
 - Otherwise: $z^{(t+1)} = z^{(t)}$
 - This is in contrast to rejection sampling, where rejected samples are simply discarded.
 - ⇒ Leads to multiple copies of the same sample!
Approximate Inference

Many samples with very low weights...

1. Perturb parameters: e.g.,

- Sequence $x^{(t)}$, $x^{(t+1)}$, ... is not a set of independent samples from $p(x)$, as successive samples are highly correlated.
- We can obtain (largely) independent samples by just retaining every Mth sample.

2. Example: Sampling from a Gaussian

- Proposal: Gaussian with $\sigma = 0.2$.
- Green: accepted samples
- Red: rejected samples

3. Importances Sampling weights

$$p(x) \propto \frac{1}{\prod_{i=1}^{M} p(x)}$$

4. Properties

- $p(x)$ is invariant, because

$$p(x) \propto \frac{1}{\prod_{i=1}^{M} p(x)}$$

5. Detailed balance

- Sufficient (but not necessary) condition to ensure that a distribution is invariant:

$$p(x) \propto \frac{1}{\prod_{i=1}^{M} p(x)}$$

- A Markov chain which respects detailed balance is reversible.

6. Question

- How can we show that x^τ tends to $p(x)$ as $\tau \to \infty$?

7. Markov chains

- First-order Markov chain:

$$p(x^{(m+1)}|x^{(m)}, \ldots, x^{(1)}) = p(x^{(m+1)}|x^{(m)})$$

8. Marginal probability

$$p(x^{(m+1)}) = \sum_{x^{(m)}} p(x^{(m)}|x^{(m)}) p(x^{(m)})$$

- A Markov chain is called homogeneous if the transition probabilities $p(x^{(m+1)}|x^{(m)})$ are the same for all m.

9. Detailed balance means

- If we pick a state from the target distribution $p(x)$ and make a transition under T to another state, it is just as likely that we will pick x_j and go from x_k to x_j than that we will pick x_j and go from x_k to x_j.

- It can easily be seen that a transition probability that satisfies detailed balance w.r.t. a particular distribution will leave that distribution invariant, because

$$\sum_{x'} p'(x') T(x', x) = \sum_{x'} p'(x) T(x', x)$$

10. $p(x) \sum_{x'} p(x'|x) = p(x)$

Line Fitting Example

11. Importance Sampling weights

- Many samples with very low weights...

- $w = 0.0548$ $w = 1.60e+08$ $w = 9.65e-06$ $w = 0.371$ $w = 0.103$

- $w = 1.01e-06$ $w = 0.111$ $w = 1.92e-09$ $w = 0.0126$ $w = 1.1e-51$

Markov Chains – Properties

- A distribution is said to be invariant (or stationary) w.r.t. a Markov chain if each step in the chain leaves that distribution invariant.

- Transition probabilities:

$$T(x^{(m)}, x^{(m+1)}) = p(x^{(m+1)}|x^{(m)})$$

- Distribution $p(x)$ is invariant if:

$$p(x) = \sum_{x'} T(x', x) p(x')$$

- Detailed balance

- Sufficient (but not necessary) condition to ensure that a distribution is invariant:

$$p(x) T(x', x) = p(x') T(x', x)$$

- A Markov chain which respects detailed balance is reversible.
Approximate Inference I

Approximate Inference I

- **Remark**
 - Our goal is to use Markov chains to sample from a given distribution.
 - We can achieve this if we set up a Markov chain such that the desired distribution is invariant.
 - However, must also require that for $m \to \infty$, the distribution $p(x^{(m)})$ converges to the required invariant distribution $p^*(x)$ irrespective of the choice of initial distribution $p(x^{(0)})$.
 - This property is called ergodicity and the invariant distribution is called the equilibrium distribution.
 - It can be shown that this is the case for a homogeneous Markov chain, subject only to weak restrictions on the invariant distribution and the transition probabilities.

Ergodicity in Markov Chains

- **Remark**
 - In practice, we often construct the transition probabilities from a set of 'base' transitions $B_1,...,B_K$.
 - This can be achieved through a mixture distribution

 $T'(x',x) = \sum_{k=1}^{K} \alpha_k B_k(x',x)$

 with mixing coefficients $\alpha_k \geq 0$ and $\sum_k \alpha_k = 1$.

- **Properties**
 - If the distribution is invariant w.r.t. each of the base transitions, then it will also be invariant w.r.t. $T'(x',x)$.
 - If each of the base transitions satisfies detailed balance, then the mixture transition T will also satisfy detailed balance.
 - Common example: each base transition changes only a subset of the variables.

Mixture Transition Distributions

- **Properties**
 - In practice, we often construct the transition probabilities from a set of 'base' transitions $B_1,...,B_K$.
 - This can be achieved through a mixture distribution

 $T'(x',x) = \sum_{k=1}^{K} \alpha_k B_k(x',x)$

 where k labels the members of the set of possible transitions considered.

- **Note**
 - Evaluation of acceptance criterion does not require normalizing constant Z_T.
 - When the proposal distributions are symmetric, Metropolis-Hastings reduces to the standard Metropolis algorithm.

MCMC – Metropolis-Hastings Algorithm

- **Metropolis-Hastings Algorithm**
 - Generalization: Proposal distribution not required to be symmetric.
 - The new candidate sample x' is accepted with probability

 $A(x',x) = \min \left\{ 1, \frac{p(x') q_k(x|x')}{p(x) q_k(x'|x)} \right\}$

 where k labels the members of the set of possible transitions considered.

- **Random Walks**
 - Consider a state space consisting of the integers $z \in \mathbb{Z}$ with initial state $z(1) = 0$ and transition probabilities

 $p(z^{(r+1)} = z(1)) = 0.5$

 $p(z^{(r+1)} = z(r) + 1) = 0.25$

 $p(z^{(r+1)} = z(r) - 1) = 0.25$

- **Analysis**
 - Expected state at time τ:

 $E[z^{(\tau)}] = 0$

 $E[(z^{(\tau)})^2] = \tau/2$

 - After τ steps, the random walk has only traversed a distance that is on average proportional to $\sqrt{\tau}$.

- **Remark**
 - Central goal in MCMC is to avoid random walk behavior!

MCMC – Metropolis-Hastings Algorithm

- **Properties**
 - We can show detailed balance:

 $A(x',x) = \min \left\{ 1, \frac{p(x') q_k(x|x')}{p(x) q_k(x'|x)} \right\}$

 $\hat{p}(x) q_k(x'|x) A_k(x',x) = \min \left\{ \hat{p}(x) q_k(x|x'), \hat{p}(x') q_k(x'|x) \right\}$

 $\hat{p}(x) = T'(x',x)$

 Note: This is wrong in the Bishop book!

Random Walks

- **Example: Random Walk behavior**
 - Consider a state space consisting of the integers $z \in \mathbb{Z}$ with initial state $z(1) = 0$ and transition probabilities

 $p(z^{(r+1)} = z(1)) = 0.5$

 $p(z^{(r+1)} = z(r) + 1) = 0.25$

 $p(z^{(r+1)} = z(r) - 1) = 0.25$

- **Analysis**
 - Expected state at time τ:

 $E[z^{(\tau)}] = 0$

 $E[(z^{(\tau)})^2] = \tau/2$

 - After τ steps, the random walk has only traversed a distance that is on average proportional to $\sqrt{\tau}$.

- **Schematic illustration**
 - For continuous state spaces, a common choice of proposal distribution is a Gaussian centered on the current state.

- **Remark**
 - Large variance: rejection rate will be high for complex problems.
 - The scale ρ of the proposal distribution should be as large as possible without incurring high rejection rates.
 - ρ should be of the same order as the smallest length scale σ_{min}.

- **Properties**
 - Large variance: rejection rate will be high for complex problems.
 - The scale ρ of the proposal distribution should be as large as possible without incurring high rejection rates.
 - ρ should be of the same order as the smallest length scale σ_{min}.

- **MCMC – Metropolis-Hastings Algorithm**
 - Central goal in MCMC is to avoid random walk behavior!
Gibbs Sampling

- **Approach**
 - MCMC algorithm that is simple and widely applicable.
 - May be seen as a special case of Metropolis-Hastings.

- **Idea**
 - Sample variable-wise: replace \(z_i \) by a value drawn from the distribution \(p(z_i | z_j) \).
 - This means we update one coordinate at a time.
 - Repeat procedure either by cycling through all variables or by choosing the next variable.

- **Properties**
 - The factor that determines the acceptance probability in the Metropolis-Hastings is determined by
 - \(A(z', z) = \frac{p(z')q_i(z'|z)}{p(z)q_i(z|z')} \)
 - \(q_i(z'|z) = p(z'|z) = p(z_i|z_j)p(z_j|z) \)
 - i.e. we get an algorithm which always accepts!
 - If you can compute (and sample from) the conditionals, you can apply Gibbs sampling.
 - The algorithm is completely parameter free.
 - Can also be applied to subsets of variables.

- **Example**
 - 20 iterations of Gibbs sampling on a bivariate Gaussian.

- **Discussion**
 - Gibbs sampling benefits from few free choices and convenient features of conditional distributions:
 - Conditionals with a few discrete settings can be explicitly normalized:
 - \(p(z_i | x_{fi}) = \frac{p(z_i, x_{fi})}{\sum_{x_{fi}} p(z_i, x_{fi})} \)
 - Continuous conditionals are often only univariate.
 - In case of graphical models, the conditional distributions depend only on the variables in the corresponding Markov blankets.

- **How Should We Run MCMC?**
 - Arbitrary initialization means starting iterations are bad
 - Discard a "burn-in" period.
 - How do we know if we have run for long enough?
 - You don’t. That’s the problem.
 - The samples are not independent
 - Solution 1: Keep only every \(M \)th sample ("thinning").
 - Solution 2: Keep all samples and use the simple Monte Carlo estimator on MCMC samples
 - It is consistent and unbiased if the chain has "burned in".
 - Use thinning only if computing \(f(x) \) is expensive.
 - For opinion on thinning, multiple runs, burn in, etc.
Summary: Approximate Inference

- Exact Bayesian Inference often intractable.
- Rejection and Importance Sampling
 - Generate independent samples.
 - Impractical in high-dimensional state spaces.
- Markov Chain Monte Carlo (MCMC)
 - Simple & effective (even though typically computationally expensive).
 - Scales well with the dimensionality of the state space.
 - Issues of convergence have to be considered carefully.
- Gibbs Sampling
 - Used extensively in practice.
 - Parameter free
 - Requires sampling conditional distributions.

References and Further Reading

- Sampling methods for approximate inference are described in detail in Chapter 11 of Bishop’s book.
- Another good introduction to Monte Carlo methods can be found in Chapter 29 of MacKay’s book (also available online: http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html)

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

David MacKay
Information Theory, Inference, and Learning Algorithms
Cambridge University Press, 2003