Advanced Machine Learning
Summer 2019
Part 16 – Latent Variable Models III
19.06.2019

Prof. Dr. Bastian Leibe
RWTH Aachen University, Computer Vision Group
http://www.vision.rwth-aachen.de

Course Outline

- Regression Techniques
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Kernels (Kernel Ridge Regression)
- Deep Reinforcement Learning
- Probabilistic Graphical Models
 - Bayesian Networks
 - Markov Random Fields
 - Inference (exact & approximate)
 - Latent Variable Models
- Deep Generative Models
 - Generative Adversarial Networks
 - Variational Autoencoders

Topics of This Lecture

- Recap: General EM
- Bayesian Estimation Revisited
 - Conjugate priors
 - Probability distributions
- Bayesian Mixture Models
 - Towards a full Bayesian treatment
 - Dirichlet priors
 - Finite mixtures
 - Infinite mixtures
- Approximate Inference for Bayesian Mixture Models
 - Gibbs Sampler

Recap: General EM Algorithm

1. Choose an initial setting for the parameters \(\theta^{(0)} \)
2. E-step: Evaluate \(p(Z|X, \theta^{(l)}) \)
3. M-step: Evaluate \(\theta^{(l+1)} \) given by
 \[
 \theta^{(l+1)} = \arg \max_{\theta} Q(\theta, \theta^{(l)})
 \]
 where
 \[
 Q(\theta, \theta^{(l)}) = \sum_Z p(Z|X, \theta^{(l)}) \log p(X, Z|\theta)
 \]
4. While not converged, let \(\theta^{(l+1)} \) and return to step 2.

Recap: The EM Algorithm in General

- Decomposition
 - Introduce a distribution \(q(Z) \) over the latent variables. For any choice of \(q(Z) \), the following decomposition holds
 \[
 \log p(X|\theta) = L(q, \theta) + KL(q \parallel p)
 \]
 where
 \[
 L(q, \theta) = \sum_Z q(Z) \log \left(\frac{p(X,Z|\theta)}{q(Z)} \right)
 \]
 \[
 KL(q \parallel p) = -\sum_Z q(Z) \log \left(\frac{p(X,Z|\theta)}{q(Z)} \right)
 \]
 \(KL(q \parallel p) \) is the Kullback-Leibler divergence between the distribution \(q(Z) \) and the posterior distribution \(p(Z|X, \theta) \).
 \(L(q, \theta) \) is a functional of the distribution \(q(Z) \) and a function of the parameters \(\theta \). Since \(KL \geq 0 \), \(L(q, \theta) \) is a lower bound on \(\log p(X|\theta) \).

Recap: Analysis of EM

- Decomposition
 \[
 \log p(X|\theta) = L(q, \theta) + KL(q \parallel p)
 \]
- Interpretation
 - \(L(q, \theta) \) is a lower bound on \(\log p(X|\theta) \).
 - The approximation comes from the fact that we use an approximative distribution \(q(Z) = p(Z|X, \theta^{(l)}) \) instead of the (unknown) real posterior.
 - The KL divergence measures the difference between the approximative distribution \(q(Z) \) and the real posterior \(p(Z|X, \theta) \).
 - In every EM iteration, we try to make this difference smaller.

Recap: Analysis of EM
Recap: Analysis of EM

- Visualization in the space of parameters
- The EM algorithm alternately
 - Computes a lower bound on the log-likelihood for the current parameters values
 - And then minimizes this bound to obtain the new parameter values.

Topics of This Lecture

- Recap: General EM
- Bayesian Estimation Revisited
 - Conjugate priors
 - Probability distributions
- Bayesian Mixture Models
 - Towards a full Bayesian treatment
 - Dirichlet priors
 - Finite mixtures
 - Infinite mixtures
- Approximate Inference for Bayesian Mixture Models
 - Gibbs Sampler

Motivation

- Recall: Bayesian estimation
\[p(x|X) = \int p(x|\theta)p(\theta) \frac{p(X|\theta)p(\theta)}{\int p(X|\theta)p(\theta) d\theta} d\theta \]
- So far, we have only done this for Gaussian distributions, where the integrals could be solved analytically.
- Now, let’s also examine other distributions...

Conjugate Priors

- Problem: How to evaluate the integrals?
 - We will see that if likelihood and prior have the same functional form \(c f(x) \), then the analysis will be greatly simplified and the integrals will be solvable in closed form.
 - Such an algebraically convenient choice is called a conjugate prior.
 - Whenever possible, we should use it.
 - To do this, we need to know for each probability distribution what is its conjugate prior. ⇒ Topic of this lecture.
 - What to do when we cannot use the conjugate prior?
 ⇒ Use approximate inference methods.

The Multinomial Distribution

- Joint distribution over \(m_1, \ldots, m_K \) conditioned on \(\mu \) and \(N \)
 \[\text{Mult}(m_1, m_2, \ldots, m_K | \mu, N) = \binom{N}{m_1, m_2, \ldots, m_K} \prod_{k=1}^{K} m_k^{m_k} \]
 with the normalization coefficient
 \[\binom{N}{m_1, m_2, \ldots, m_K} = \frac{N!}{m_1! m_2! \cdots m_K!} \]
- Properties
 \[\mathbb{E}[m_k] = \frac{N \mu_k}{N} \]
 \[\text{var}[m_k] = \frac{N \mu_k (1 - \mu_k)}{N} \]
 \[\text{cov}[m_k, m_l] = -\frac{N \mu_k \mu_l}{N} \]

Bayesian Multinomial

- Conjugate prior for the Multinomial
 - Introduce a family of prior distributions for the parameters \(\{\mu_k\} \) of the Multinomial.
 - The conjugate prior is given by
 \[p(\mu | \alpha) \propto \prod_{k=1}^{K} \mu_k^{\alpha_k - 1} \]
 with the constraints
 \[\forall k: 0 \leq \mu_k \leq 1 \quad \text{and} \quad \sum_{k=1}^{K} \mu_k = 1 \]
The Dirichlet Distribution

- **Dirichlet Distribution**
 - Multivariate generalization of the Beta distribution
 \[
 \text{Dir}(\alpha) = \frac{\Gamma(\alpha_1) \cdots \Gamma(\alpha_K)}{\Gamma(\sum_k \alpha_k)} \prod_k \alpha_k^{\alpha_k-1}
 \]
 with \(\alpha_0 = \sum_k \alpha_k \)

- **Properties**
 - Conjugate prior for the Multinomial.
 - The Dirichlet distribution over \(K \) variables is confined to a \(K-1 \) dimensional simplex.
 - Expectations:
 \[
 E[\alpha_k] = \alpha_k \alpha_0 / \alpha_0 \\
 \text{var}[\alpha_k] = \alpha_k (\alpha_0 - \alpha_k) / \alpha_0 (\alpha_0 + 1) \\
 \text{cov}[\alpha_j, \alpha_k] = -\alpha_0 \alpha_j \alpha_k / \alpha_0 (\alpha_0 + 1)
 \]

Recap: The Gaussian Distribution

- **One-dimensional case**
 - Mean \(\mu \)
 - Variance \(\sigma^2 \)
 \[
 N(x | \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left\{ -\frac{(x - \mu)^2}{2\sigma^2} \right\}
 \]

- **Multi-dimensional case**
 - Mean \(\mu \)
 - Covariance \(\Sigma \)
 \[
 N(x | \mu, \Sigma) = \frac{1}{(2\pi)^{D/2} \sqrt{\det \Sigma}} \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\}
 \]

Bayesian Inference for the Gaussian

- **Univariate conjugate priors**
 - \(\sigma^2 \) known, \(\mu \) unknown: \(p(\mu) \text{ Gaussian} \)
 \[
 p(X | \mu) = \frac{1}{(2\pi\sigma^2)^{N/2}} \exp \left\{ -\frac{1}{2\sigma^2} \sum_n (x_n - \mu)^2 \right\}
 \]
 - \(\mu \) is known, \(\lambda \) unknown: \(p(\lambda) \text{ Gamma} \)
 \[
 p(X | \lambda) \propto \lambda^{N/2} \exp \left\{ -\frac{\lambda}{2} \sum_n (x_n - \mu)^2 \right\}
 \]
 - both \(\mu \) and \(\lambda \) unknown: \(p(\mu, \lambda) \text{ Gaussian-Gamma} \)
 \[
 p(X | \mu, \lambda) = \left[\frac{1}{\lambda^{1/2}} \exp \left\{ -\frac{\lambda}{2} \right\} \right]^N \exp \left\{ -\frac{\lambda}{2} \sum_n (x_n - \mu)^2 \right\}
 \]

Topics of This Lecture

- Recap: General EM
- Bayesian Estimation Revisited
 - Conjugate priors
 - Probability distributions
- Bayesian Mixture Models
 - Towards a full Bayesian treatment
 - Dirichlet priors
 - Finite mixtures
 - Infinite mixtures
- Approximate Inference for Bayesian Mixture Models
 - Gibbs Sampler

Towards a Full Bayesian Treatment...

- **Mixture models**
 - We have discussed mixture distributions with \(K \) components
 \[
 p(X | \theta) = \sum_Z p(X, Z | \theta)
 \]
 - So far, we have derived the ML estimates \(\Rightarrow \text{EM} \)
 - Introduced a prior \(p(\theta) \) over parameters \(\Rightarrow \text{MAP-EM} \)
 - One question remains open: how to set \(K \)?
 \(\Rightarrow \) Let's also set a prior on the number of components...
Bayesian Mixture Models

- Let's be Bayesian about mixture models
 - Place priors over our parameters
 - Again, introduce variable z_n as indicator which component data point x_n belongs to.

$$z_n | \pi \sim \text{Multinomial}(\pi)$$
$$x_n | z_n = k \sim N(\mu_k, \Sigma_k)$$

- This is similar to the graphical model we've used before, but now the π and $\theta_l = (\mu_k, \Sigma_k)$ are also treated as random variables.
- What would be suitable priors for them?

Bayesian Mixture Models

- Full Bayesian Treatment
 - Given a dataset, we are interested in the cluster assignments

$$p(Z|X) = \frac{p(X|Z)p(Z)}{\sum_K p(X|Z_K)p(Z_K)}$$

where the likelihood is obtained by marginalizing over the parameters θ

$$p(X|Z) = \prod_{n=1}^{N} \prod_{k=1}^{K} p(x_n | z_{nk}, \theta_k)$$

- The posterior over assignments is intractable!
 - Denominator requires summing over all possible partitions of the data into K groups!
 - Need efficient approximate inference methods to solve this...

Recap: The Dirichlet Distribution

- Dirichlet Distribution
 - Conjugate prior for the Categorical and the Multinomial distrib.

$$\text{Dir}(\mu | \alpha) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_K)} \prod_{k=1}^{K} \alpha_k^{\mu_k - 1}$$

- Symmetric version (with concentration parameter α)

$$\text{Dir}(\mu | \alpha) = \frac{\Gamma(\alpha)}{\Gamma(\alpha/K)^K} \prod_{k=1}^{K} \alpha_k^{\mu_k - 1}$$

- Properties

$$E[\mu_k] = \frac{\alpha_k}{\alpha_0}$$

$$\text{var}[\mu_k] = \frac{\alpha_k (\alpha_0 - \alpha_k)}{\alpha_0^2 (\alpha_0 + 1)}$$

$$\text{cov}[\mu_k, \mu_l] = \frac{\alpha_k \alpha_l}{\alpha_0^2 (\alpha_0 + 1)}$$

- More structure appears as more points are drawn
Visual Computing Institute | Prof. Dr. Bastian Leibe
Advanced Machine Learning
Part 16 – Latent Variable Models III

Dirichlet Samples

- Effect of concentration parameter α
 - Controls sparsity of the resulting samples

- Finite mixture of K components
 \[p(x_n | \theta) = \sum_{k=1}^{K} \pi_k p(x_n | \theta_k) \]
 - The distribution of latent variables x_n given π is multinomial
 \[p(x | \pi) = \prod_{k=1}^{K} \pi_k^{n_k} \]
 - Assume mixing proportions have a given symmetric conjugate Dirichlet prior

Mixture Model with Dirichlet Priors

- Integrating out the mixing proportions π:
 \[p(x) = \int p(x | \pi)p(\pi) d\pi = \int \prod_{k=1}^{K} \pi_k^{N_k} \frac{\Gamma(\alpha)}{\Gamma(\alpha/K)^K} \prod_{k=1}^{K} \pi_k^{\alpha/K-1} d\pi \]
 - This is again a Dirichlet distribution (reason for conjugate priors)

- Conditional probabilities
 - Let’s examine the conditional of x_n given all other variables $p(z_{nk} = 1 | z_{-n}, \alpha) = \frac{p(z_{nk} = 1, z_{-n}, \alpha)}{p(z_{-n}, \alpha)}$ where z_n denotes all indices except n.
Finite Dirichlet Mixture Models

- Conditional probabilities: Finite K
 \[p(z_{nk} = 1|z_{-n}, \alpha) = \frac{N_{n,k} + \alpha/K}{N - 1 + \alpha}, \quad \text{with} \quad N_{n,k} = \sum_{i=1, j \neq n}^{N} z_{ik} \]

- This is a very interesting result. Why?
 - We directly get a numerical probability, no distribution.
 - The probability of joining a cluster mainly depends on the number of existing entries in a cluster.
 \[\Rightarrow \text{The more populous a class is, the more likely it is to be joined!} \]
 - In addition, we have a base probability of also joining as-yet empty clusters.

- This result can be directly used in Gibbs Sampling…
(see later derivation)

Infinite Dirichlet Mixture Models

- Conditional probabilities: Finite K
 \[p(z_{nk} = 1|z_{-n}, \alpha) = \frac{N_{n,k} + \alpha/K}{N - 1 + \alpha}, \quad \text{with} \quad N_{n,k} = \sum_{i=1, j \neq n}^{N} z_{ik} \]

- Conditional probabilities: Infinite K
 - Taking the limit as $K \rightarrow \infty$ yields the conditionals
 \[p(z_{nk} = 1|z_{-n}, \alpha) = \begin{cases} \frac{N_{n,k}}{N - 1 + \alpha} & \text{if } k \text{ represented} \\ \frac{\alpha}{N - 1 + \alpha} & \text{if all } k \text{ not represented} \end{cases} \]

 - Left-over mass $\alpha \Rightarrow$ countably infinite number of indicator settings

Discussion

- Infinite Mixture Models
 - What we have just seen is a first example of a Dirichlet Process.
 - DPs allow us to work with models that have an infinite number of components.
 - This will raise a number of issues
 - How to represent infinitely many parameters?
 - How to deal with permutations of the class labels?
 - How to control the effective size of the model?
 - How to perform efficient inference?
 \[\Rightarrow \text{More background needed here!} \]
 - DPs are a very interesting class of models, but would take us too far here.
 - If you’re interested in learning more about them, take a look at the Advanced ML slides from Winter 2012.

Topics of This Lecture

- Recap: General EM
- Bayesian Estimation Revisited
 - Conjugate priors
 - Probability distributions
- Bayesian Mixture Models
 - Towards a full Bayesian treatment
 - Dirichlet priors
 - Finite mixtures
 - Infinite mixtures
- Approximate Inference for Bayesian Mixture Models
 - Gibbs Sampler

Recap: Gibbs Sampling

- Approach
 - MCMC-algorithm that is simple and widely applicable.
 - May be seen as a special case of Metropolis-Hastings.
- Idea
 - Sample variable-wise: replace x_i by a value drawn from the distribution $p(z|x_i)$.
 \[\Rightarrow \text{This means we update one coordinate at a time.} \]
 - Repeat procedure either by cycling through all variables or by choosing the next variable.
- Properties
 - The algorithm always accepts!
 - Completely parameter free.
 - Can also be applied to subsets of variables.
Gibbs Sampling for Finite Mixtures

- **Standard finite mixture sampler**
 - Given mixture weights $\pi^{(t-1)}$ and cluster parameters $\{\theta_k^{(t-1)}\}_{k=1}^K$ from the previous iteration, sample new parameters as follows:
 1. Independently assign each point x_n to one of the K clusters by sampling the variables z_n from the multinomial distributions

 $z_n^{(t)} = \arg\max_{k=1}^{K} \left[\frac{\pi_k^{(t-1)} \cdot g(x_n | \theta_k^{(t-1)})}{Z_n^{(t-1)}} \right]$

 2. Sample new mixture weights from the Dirichlet distribution

 $\pi^{(t)} \sim \text{Dir}(N_1 + \alpha/K, \ldots, N_K + \alpha/K)$

 3. For each of the K clusters, independently sample new parameters from the conditional of the assigned observations

 $\theta_k^{(t)} \sim p(\theta | \{x_n | z_n = k\}, H) $

- **We need approximate inference here**
 - **Gibbs Sampling**: Conditionals are simple to compute

 $p(z_n = k | \text{others}) \propto \sum_{k=1}^{K} \pi_k N(x_n | \mu_k, \Sigma_k) ^{z_n}$

 $\pi | z \sim \text{Dir}(N_1 + \alpha/K, \ldots, N_K + \alpha/K)$

 $\mu_k, \Sigma_k | \text{others} \sim \mathcal{N}(\mu', \Sigma', \sigma')$

- **However, this will be rather inefficient...**
 - In each iteration, algorithm can only change the assignment for individual data points.
 - There are often groups of data points that are associated with high probability to the same component. => Unlikely that group is moved.
 - Better performance by collapsed Gibbs sampling which integrates out the parameters π, μ, Σ.

- **More efficient algorithm**
 - Conjugate priors allow analytic integration of some parameters
 - Resulting sampler operates on reduced space of cluster assignments (implicitly considers all possible cluster shapes)

- **Procedure**
 - The model implies the factorization

 $p(z_n | x_n, \alpha, H) \propto p(z_n | \alpha) p(x_n | z_n, H)$

 - Derive

 $p(z | \alpha) = \int p(z | \pi) p(\pi | \alpha) d\pi$

- **Collapsed Finite Bayesian Mixture**
Recap: Mixture Models with Dirichlet Priors

- Integrating out the mixing proportions π

 $$p(z|\alpha) = \int p(z|\pi)p(\pi|\alpha)d\pi$$

 $$= \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)} \prod_{k=1}^{K} \frac{\Gamma(N_k + \alpha/K)}{\Gamma(\alpha/K)}$$

- Conditional probabilities

 - Examine the conditional of z_n given all other variables z_{-n}

 $$p(z_n = 1|z_{-n}, \alpha) = \frac{p(z_n = 1, z_{-n}|\alpha) p(z_{-n}|\alpha)}{p(z_{-n}|\alpha)} = \frac{N_{n,k} + \alpha/K}{N - 1 + \alpha}$$

 $N_{n,k}$ def $\sum_{i=1}^{N} z_{ni}$

 ⇒ The more populous a class is, the more likely it is to be joined.

Collapsed (Rao-Blackwellized) Finite Mixture Sampler

- Algorithm

 1. Sample a random permutation $\tau(\cdot)$ of the integers $\{1, \ldots, N\}$.
 2. Set $z = x^{(1)}$. For each $i \in \{\tau(1), \ldots, \tau(N)\}$, sequentially resample z_i as follows:
 a. For each of the K clusters, determine the predictive likelihood (this can be computed from cached sufficient statistics)

 $$p_k(x_i|z_{-i}, H) = p(x_i|z_{-i} = 1, m \neq n), H)$$
 b. Sample a new assignment z_i from the multinomial distribution

 $$z_i \sim \sum_{k=1}^{K} \frac{N_{n,k} + \alpha/K}{N - 1 + \alpha} p_k(x_i|z_{-i}, H)$$
 c. Update cached sufficient statistics to reflect assignment z_i.
 3. Set $x^{(t)} = z$. Optionally, mixture parameters may be sampled via steps 2-3 of the standard finite mixture sampler.

Standard vs. Collapsed Samplers

⇒ Collapsed sampler converges much more quickly.

- Theorem (Rao-Blackwell)

 "Analytical marginalization of some variables from a joint distribution always reduces the variance of later estimates."

Discussion

-Collapsed Gibbs sampling

 Integrates out the parameters π, μ, Σ

 $$p(z_{nk} = 1|\text{others}) \propto \frac{(N_{n,k} + \alpha/K)}{N - 1 + \alpha} p_k(x_n|z_{-n}, H)$$

- Properties

 - Can change all assignments in each iteration.
 - Able to move entire groups between clusters.
 - Faster convergence, less likely to get stuck.

References and Further Reading

- Unfortunately, there are currently no good introductory textbooks on the Dirichlet Process. We therefore recommend a number of tutorial papers on their different aspects.

 - One of the best available general introductions
 - A gentle introductory tutorial (recommended 1st read)
 - Good overview of MCMC methods for DPMMs