Topics of This Lecture

• Recap: GANs
• Autoencoders
 – Motivation
 – Regularized Autoencoder
 – Denoising Autoencoder
• Variational Autoencoders (VAE)
 – Autoencoders as Generative Models
 – Intractability
 – Variational Approximation
 – Evidence Lower Bound (ELBO)
• Application Examples

Recap: Generative Adversarial Networks (GANs)

• Conceptual view
 – Simultaneously train an image generator G and a discriminator D.
 – Interpreted as a two-player game

Recap: GAN Loss Function

• This corresponds to a two-player minimax game:
 $$\min_D \max_G V(D, G) = \mathbb{E}_{x \sim \text{data}} \log D(x) - \mathbb{E}_{z \sim p(z)} \log (1 - D(G(z)))$$

• Explanation
 – Train D to maximize the probability of assigning the correct label to both training examples and samples from G.
 – Simultaneously train G to minimize $\log (1 - D(G(z)))$.

• The Nash equilibrium of this game is achieved at
 $p_D(x) = p_{\text{data}}(x)$ $\forall x$
 $D(x) = \frac{1}{2}$ $\forall x$

GAN Algorithm

```
for k = 1 : max_iterations do
  for i = 1 : num_critic_updates do
    $\nabla_{x} \sum \log D(x) = \log (1 - D(G(z)))$   Discriminator updates
  end

  $\nabla_{z} \sum \log (1 - D(G(z)))$   Generator updates
end
```

This gradient-based updates can use any standard gradient-based learning rate. We used momentum in our experiments.
Recap: Intuition

- Behavior near convergence
 - In the inner loop, D is trained to discriminate samples from data.
 - Gradient of D guides G to flow to regions that are more likely to be classified as data.
 - After several steps of training, G and D will reach a point at which they cannot further improve, because $p_g = p_{data}$.
 - Now, the discriminator is unable to differentiate between the two distributions, i.e., $D(x) = 0.5$.

Topics of This Lecture

- Recap: GANs
- Autoencoders
 - Motivation
 - Regularized Autoencoder
 - Denoising Autoencoder
- Variational Autoencoders (VAE)
 - Autoencoders as Generative Models
 - Intractability
 - Variational Approximation
 - Evidence Lower Bound (ELBO)
- Application Examples
Autoencoders

- After training
 - Throw away the decoder part

```latex
\text{Encoder: 4-layer conv}
\text{Decoder: 4-layer upconv}
```

Variants of Autoencoders

- Analyzing the learning process
 - Learning process minimizes a loss function $L(\mathbf{x}, g(f(\mathbf{x})))$
 - Linear decoder + L_2 loss: Autoencoder learns PCA subspace
 - Autoencoders with nonlinear encoder and decoder functions thus learn a more powerful nonlinear generalization of PCA.

- Regularized Autoencoders
 - Include a regularization term to the loss function: $L(\mathbf{x}, g(f(\mathbf{x}))) + \Omega(\mathbf{z})$
 - E.g., enforce sparsity by an L_1 regularizer $\Omega(\mathbf{z}) = \lambda \sum_i |z_i|$
Variants of Autoencoders

Denoising Autoencoder (DAE)
- Rather than the reconstruction loss, minimize $L(x, g(f(x)))$
- where f is a copy of x that has been corrupted by some noise.
- Denoising forces f and g to implicitly learn the structure of $p_{data}(x)$.

Topics of This Lecture

- Recap: GANs
- Autoencoders
 - Motivation
 - Regularized Autoencoder
 - Denoising Autoencoder
- Variational Autoencoders (VAE)
 - Autoencoders as Generative Models
 - Intractability
 - Variational Approximation
 - Evidence Lower Bound (ELBO)
- Application Examples

Autoencoders as Data Generators

- **Autoencoders**
 - Can reconstruct data and can learn features to initialize a supervised model
 - Features capture factors of variation in training data
 - Can we generate new images from an autoencoder?

- **For this we need to generate samples from the data manifold. How?**

Probabilistic Spin on Autoencoders

- **Idea:** Sample the model to generate data
- Assume training data $(x^{(i)})_{i=1}^N$ is generated from underlying latent representation z.

- Sample from true conditional $p_{θ}(x|z)$
- Sample from true prior $p_{θ}(z)$

- **Idea:** Sample the model to generate data
- We want to estimate the true parameters $θ$ of this generative model.
- **How should we represent the model?**
 - Choose prior $p(z)$ to be simple, e.g., Gaussian
 - Conditional $p(x|z)$ is complex (generates image)
 - Represent with neural network
Variational Autoencoders

- **Probabilistic Spin on Autoencoders**
 - Sample from true conditional $p_F(x|x^{(i)})$
 - Sample from true prior $p_U(x)$

- **Idea**: Sample the model to generate data
 - We want to estimate the true parameters θ^* of this generative model.

- **How to train the model?**
 - Learn model parameters to maximize likelihood of training data
 - What is the problem here? Intractable!

- **Picture**

Variational Autoencoders: Intractibility

- **Computing the data likelihood**
 \[p_F(x) = \int p_F(z)p_F(x | z)dz \]

 - $p_F(x)$ is a simple Gaussian prior.
 - $p_F(x | z)$ is a decoder Neural network.
 - But is intractable to compute $p_F(x | z)$ for every x!

 - Posterior density is also intractable

 \[p_F(x | z) = \frac{p_F(z)p_F(x | z)}{p_F(z)} \]

- **Solution**
 - In addition to the decoder network modeling $p_F(x | z)$, define additional encoder network modeling $q_F(z | x)$ that approximates $p_F(x | z)$.
 - We will see that this allows us to derive a lower bound on the data likelihood that is tractable and that we can optimize.

- **Picture**

Variational Autoencoders: Intractibility

- Since we are modeling probabilistic generation of data, encoder and decoder networks are probabilistic

- **Picture**

Variational Autoencoders

- **We can now work out the log-likelihood**
 \[\log p_F(x^{(i)}) = \mathbb{E}_{q_F(z | x^{(i)})} [\log p_F(x^{(i)})] \quad (p_F(x^{(i)}) \text{ does not depend on } x) \]

 Taking expectation w.r.t. z (using encoder network) will come in handy later.

- **Picture**

Variational Autoencoders

- **We can now work out the log-likelihood**
 \[\log p_F(x^{(i)}) = \mathbb{E}_{q_F(z | x^{(i)})} [\log p_F(x^{(i)})] \quad (p_F(x^{(i)}) \text{ does not depend on } x) \]
 \[= \mathbb{E}_z \left[\mathbb{E}_{q_F(z | x^{(i)})} [\log p_F(x^{(i)}) | z] \right] \quad \text{(Bayes' Rule)} \]
 \[= \mathbb{E}_z \left[\mathbb{E}_{q_F(z | x^{(i)})} [\log p_F(x^{(i)}) | z] q_F(z | x^{(i)}) \right] \quad \text{(Multiply by constant)} \]
 \[= \mathbb{E}_z [\log p_F(x^{(i)} | z)] - \mathbb{E}_z [\log q_F(z | x^{(i)}) | p_F(x^{(i)})] + \mathbb{E}_z \left[\log q_F(z | x^{(i)}) \right] \]

 The expectation w.r.t z (using encoder network) lets us write nice KL terms.
Variational Autoencoders

- We can now work out the log-likelihood

\[
\log p(x^{(i)}) = E_{z \sim q(x^{(i)} | x)} \log p(x^{(i)})
\]

\((p(x^{(i)}) \) does not depend on \(i \) \)

\[
= E_x \log p(x^{(i)} | z)p(z) \frac{q_\phi(z | x^{(i)})}{p_\theta(z)}
\]

(Bayes’ Rule)

\[
= E_x \log p(x^{(i)} | z)p(z) \frac{q_\phi(z | x^{(i)})}{p_\theta(z)}
\]

(Multiply by constant)

\[
= E_x \log p(x^{(i)} | z) - E_x \log q_\phi(z | x^{(i)})p_\theta(z) + E_x \log q_\phi(z | x^{(i)})p_\theta(z)
\]

Decoder network gives \(p_x(x | z) \), can compute estimate of this term through sampling.
(Sampling differentiable through reparametrization trick, see paper)

\begin{align*}
V_i &= \frac{1}{n} \sum_{i=1}^{n} \log p(x^{(i)})
\end{align*}

Want to maximize data likelihood

\[
\mathcal{L}(x^{(i)}, \theta, \phi) \geq 0
\]

Tractable lower bound, which we can take gradient of and optimize

Variational Lower Bound (“ELBO”)

\[
\log \pi_\theta(x^{(i)}) \geq \mathcal{L}(x^{(i)}, \theta, \phi)
\]

- Reconstruct the input data
- Make approximate posterior distribution close to prior

Training: Maximize lower bound

\[
\theta^*, \phi^* = \arg \max_{\theta, \phi} \sum_{i=1}^{n} \mathcal{L}(x^{(i)}, \theta, \phi)
\]

Topics of This Lecture

- Recap: GANs
 - Autoencoders
 - Motivation
 - Regularized Autoencoder
 - Denoising Autoencoder
 - Variational Autoencoders (VAE)
 - Autoencoders as Generative Models
 - Intractability
 - Variational Approximation
 - Evidence Lower Bound (ELBO)
- Application Examples
Application Examples

32x32 CIFAR-10

Labeled Faces in the Wild

References

• Variational Auto-Encoders