Advanced Machine Learning
Summer 2019
Part 19 – Variational Autoencoders II
10.07.2019

Prof. Dr. Bastian Leibe
RWTH Aachen University, Computer Vision Group
http://www.vision.rwth-aachen.de

Course Outline

• Regression Techniques
 – Linear Regression
 – Regularization (Ridge, Lasso)
 – Kernels (Kernel Ridge Regression)
• Deep Reinforcement Learning
• Probabilistic Graphical Models
 – Bayesian Networks
 – Markov Random Fields
 – Inference (exact & approximate)
 – Latent Variable Models
• Deep Generative Models
 – Generative Adversarial Networks
 – Variational Autoencoders

Topics of This Lecture

• Recap: Variational Autoencoders
 – Autoencoders as Generative Models
 – Intractability
 – Variational Approximation
 – Evidence Lower Bound (ELBO)
• Applying VAEs
 – VAE Training
 – VAE Data Generation

Recap: Autoencoders

L2 Loss function

Reconstructed input data
Features
Input data

• After training
 – Throw away the decoder part
 – Encoder can be used to initialize a supervised model
 – Fine-tune encoder jointly with supervised model
 – Idea used in the 90s and early 2000s to pre-train deeper models

Recap: Variants of Autoencoders

L2 Loss function

Reconstructed input data
Features
Input data

• Regularized Autoencoders
 – Include a regularization term to the loss function: $L(x, g(f(x))) + \Omega(z)$
 – E.g., enforce sparsity by an L1 regularizer $\Omega(z) = \lambda \sum |z_i|$
• **Variational Autoencoders**
 - Rather than the reconstruction loss, minimize $L(x, g(f(\tilde{x})))$ where \tilde{x} is a copy of x that has been corrupted by some noise.
 - Denoising forces f and g to implicitly learn the structure of $p_{data}(x)$.

Reconstructed input data

Features

Input data

Loss function

Encoder

Decoder

- **Denoising Autoencoder (DAE)**
 - Rather than the reconstruction loss, minimize $L(x, g(f(\tilde{x})))$ where \tilde{x} is a copy of x that has been corrupted by some noise.
 - Denoising forces f and g to implicitly learn the structure of $p_{data}(x)$.

Reconstructed input data

Features

Input data

Loss function

Encoder

Decoder

Reconstruction

Reconstructed input data

Features

Input data

Loss function

Encoder

Decoder

VAE Data Generation

VAE Training

Applying VAEs

Topics of This Lecture

- **Recap: Variational Autoencoders**
 - Autoencoders as Generative Models
 - Intractability
 - Variational Approximation
 - Evidence Lower Bound (ELBO)
- **Applying VAEs**
 - VAE Training
 - VAE Data Generation

Reconstruction

Variational Autoencoders

Reconstructed input data

Features

Input data

Loss function

Encoder

Decoder

- **Denoising Autoencoder (DAE)**
 - Rather than the reconstruction loss, minimize $L(x, g(f(\tilde{x})))$ where \tilde{x} is a copy of x that has been corrupted by some noise.
 - Denoising forces f and g to implicitly learn the structure of $p_{data}(x)$.
Applying Variational Autoencoders

• Putting it all together…

 - Maximizing the likelihood lower bound
 \[\mathbb{E}[\log p_d(x^{(i)} \mid z)] - D_{KL}(q(z^{(i)} \mid x^{(i)}) || p(z^{(i)})) \]
 \[\mathcal{L}(x^{(i)}, \theta, \phi) \]

 - Let’s look at computing the bound for a given minibatch of input data (forward pass)…

Input data \(x \)

Applying Variational Autoencoders

• Putting it all together…

 - Maximizing the likelihood lower bound
 \[\mathbb{E}[\log p_d(x^{(i)} \mid z)] - D_{KL}(q(z^{(i)} \mid x^{(i)}) || p(z^{(i)})) \]
 \[\mathcal{L}(x^{(i)}, \theta, \phi) \]

 Make approximate posterior distribution close to prior

Encoder \(q(z \mid x) \)

Sample \(z \) from \(z \sim \mathcal{N}(\mu_{z^{(i)}}, \Sigma_{z^{(i)}}) \)

Applying Variational Autoencoders

• Putting it all together…

 - Maximizing the likelihood lower bound
 \[\mathbb{E}[\log p_d(x^{(i)} \mid z)] - D_{KL}(q(z^{(i)} \mid x^{(i)}) || p(z^{(i)})) \]
 \[\mathcal{L}(x^{(i)}, \theta, \phi) \]

 Make approximate posterior distribution close to prior

Encoder \(q(z \mid x) \)

Sample \(z \) from \(z \sim \mathcal{N}(\mu_{z^{(i)}}, \Sigma_{z^{(i)}}) \)

Applying Variational Autoencoders

• Putting it all together…

 - Maximizing the likelihood lower bound
 \[\mathbb{E}[\log p_d(x^{(i)} \mid z)] - D_{KL}(q(z^{(i)} \mid x^{(i)}) || p(z^{(i)})) \]
 \[\mathcal{L}(x^{(i)}, \theta, \phi) \]

 Make approximate posterior distribution close to prior

Encoder \(q(z \mid x) \)

Sample \(z \) from \(z \sim \mathcal{N}(\mu_{z^{(i)}}, \Sigma_{z^{(i)}}) \)

Applying Variational Autoencoders

• Putting it all together…

 - Maximizing the likelihood lower bound
 \[\mathbb{E}[\log p_d(x^{(i)} \mid z)] - D_{KL}(q(z^{(i)} \mid x^{(i)}) || p(z^{(i)})) \]
 \[\mathcal{L}(x^{(i)}, \theta, \phi) \]

 Compute this forward pass for every minibatch of input data, then backprop

Encoder \(q(z \mid x) \)

Sample \(z \) from \(z \sim \mathcal{N}(\mu_{z^{(i)}}, \Sigma_{z^{(i)}}) \)
Variational Autoencoders: Generating Data

• Use decoder network
 – Now sample \(z \) from prior
 \[p(x|z) \]
 \[q \]
 \[\mathcal{N} \]
 \[\mu \]
 \[\sigma \]
 \[x \]
 \[z \]
 \[\mathcal{N} \]
 \[0 \]
 \[I \]
 \[\mu \]
 \[\sigma \]
 \[x \]
 \[z \]
 \[\mathcal{N} \]

D. Kingma, M. Welling, Auto-Encoding Variational Bayes, ICLR 2014

Some More Learned Manifolds

32x32 CIFAR-10
Labeled Faces in The Wild

Variational Autoencoders: Generating Data

• Another example
 – Learning a face manifold

• Comments
 – Diagonal prior on \(z \)
 \[\Rightarrow \]
 Independent latent variables
 – Different dimensions of \(z \) encode interpretable factors of variation

Degree of smile
Head pose

Summary: Variational Autoencoders

• Idea
 – Probabilistic Spin on traditional autoencoders
 – Intractable density \(\Rightarrow \) derive & optimize a variational lower bound
• Pros
 – Principled approach to generative models
 – Allows inference of \(q_\phi(z|x) \), can be useful feature representation for other tasks
• Cons
 – Only maximizes lower bound of likelihood
 – Samples blurrier and lower quality compared to state-of-the-art (GANs)
• Active area of research
 – More flexible approximations, e.g., GMMs instead of diagonal Gaussian

Combinations

• Attempts at combining the advantages
 – Use learned feature representations in the GAN discriminator as basis for the VAE reconstruction objective
 – Replacing element-wise errors with feature-wise errors to better capture the data distribution

Results

Samples from different generative models
Reconstructions from different autoencoders

– VAE:
– VAE\(\text{-GAN} \):
– VAE/GAN:

VAE/GAN trained together
References

• Variational Auto-Encoders