Advanced Machine Learning
Lecture 14
Hierarchical Dirichlet Processes II

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de/
leibe@vision.rwth-aachen.de
This Lecture: **Advanced Machine Learning**

- **Regression Approaches**
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Kernels (Kernel Ridge Regression)
 - Gaussian Processes

- **Bayesian Estimation & Bayesian Non-Parametrics**
 - Prob. Distributions, Approx. Inference
 - Mixture Models & EM
 - Dirichlet Processes
 - Latent Factor Models
 - Beta Processes

- **SVMs and Structured Output Learning**
 - SV Regression, SVDD
 - Large-margin Learning

B. Leibe
Topics of This Lecture

• Hierarchical Dirichlet Processes
 - Recap
 - Chinese Restaurant Franchise
 - Gibbs sampling for HDPs
 - CRF Sampler

• Applications
 - Example: Document topic modeling
 - Latent Dirichlet Allocation (LDA)
Recap: Hierarchical Dirichlet Processes

\[H \]
\[\gamma \]
\[G_0 \]
\[\alpha \]
\[G_i \]
\[\theta_{ij} \]
\[x_{ij} \]
\[N_i \]

\[G_0 \sim \sim DP(\gamma, H) \]
\[G_i \sim \sim DP(\alpha, G_0) \]
\[\theta_{ij} \mid G_i \sim G_i \]
\[x_{ij} \mid \theta_{ij} \sim p(x_{ij} \mid \theta_{ij}) \]
Recap: Chinese Restaurant Franchise (CRF)

- **Chain of Chinese restaurants**
 - Each restaurant has an unbounded number of tables.
 - There is a global menu with an unbounded number of dishes.
 - The first customer at a table selects the dish for that table from the global menu.

- **Reinforcement effects**
 - Customers prefer to sit at tables with many other customers, and prefer dishes that are chosen by many other customers.
 - Dishes are chosen with probability proportional to the number of tables (franchise-wide) that have previously served that dish.
Chinese Restaurant Franchise (CRF)

- Examine marginal properties of HDP
 - First integrate out G_i, then G_0.

Slide adapted from Kurt Miller
Chinese Restaurant Franchise (CRF)

- **Step 1: Integrate out** G_i:
 - **Variable definitions**
 - θ_{ij}: RV for customer i in restaurant j.
 - θ_{jt}^*: RV for table t in restaurant j.
 - θ_k^{**}: RV for dish k.
 - m_{jk}: number of tables in rest. j serving dish k.
 - n_{jtk}: number of customers in rest. j sitting at table t and being served dish k.
 - We denote marginal counts by dots, e.g.
 $$m_j. = \sum_{k=1}^{K} m_{jk}$$
 - **Integration yields a set of conditional distributions described by a Polya urn scheme**
 $$\theta_{ij} | \theta_{1j}, ..., \theta_{i-1,j}, \alpha, G_0 \sim \sum_{t=1}^{m_j.} \frac{n_{jt.}}{\alpha + n_{j..}} \delta_{\theta_{jt}^*} + \frac{\alpha}{\alpha + n_{j..}} G_0$$

Image source: Kurt Miller
Chinese Restaurant Franchise (CRF)

- **Step 2: Integrate out** G_0:
 - **Variable definitions**
 - θ_{ij}: RV for customer i in restaurant j.
 - θ_{jt}: RV for table t in restaurant j.
 - θ_k: RV for dish k.
 - m_{jk}: number of tables in rest. j serving dish k.
 - n_{jtk}: number of customers in rest. j sitting at table t and being served dish k.
 - We denote marginal counts by dots, e.g. $m_j = \sum_{k=1}^{K} m_{jk}$
 - Again, we get a Polya urn scheme
 $$\theta_{jt}^* | \theta_{11}, \ldots, \theta_{1, m_1}, \ldots, \theta_{j, t-1}, \gamma, H \sim \sum_{k=1}^{K} \frac{m_{k}}{\gamma + m} \delta_{\theta_k^*} + \frac{\gamma}{\gamma + m} H$$
Inference for HDP: CRF Sampler

- Using the CRF representation of the HDP
 - Customer i in restaurant j is associated with i.i.d draw from G_i and sits at table t_{ij}.
 - Table t in restaurant j is associated with i.i.d draw from G_0 and serves dish k_{jt}.
 - Dish k is associated with i.i.d draw from H.

- Gibbs sampling approach
 - Iteratively sample the table and dish assignment variables, conditioned on the state of all other variables.
 - The parameters θ_{ij} are integrated out analytically (assuming conjugacy).
 - To resample, make use of exchangeability.
 - Imagine each customer i being the last to enter restaurant j.

B. Leibe
Inference for HDP: CRF Sampler

• Procedure

1. Resample t_{ij} according to the following distribution

\[
\begin{align*}
 t_{ij} &= t & \text{with prob. } & \propto \frac{n_{ij}^{-t}}{n_{ij}^{-t} + \alpha f_{k_{j,t}}(\{x_{ij}\})} \\
 t_{ij} &= t^{\text{new}}, k_{j,t_{\text{new}}} = k & \text{with prob. } & \propto \frac{n_{ij}^{-t}}{n_{ij}^{-t} + \alpha m_{ik}^{-t}} f_{k}(\{x_{ij}\}) \\
 t_{ij} &= t^{\text{new}}, k_{j,t_{\text{new}}} = k^{\text{new}} & \text{with prob. } & \propto \frac{\alpha}{n_{ij}^{-t} + \alpha m_{ij}^{-t} + \gamma} f_{k_{t_{\text{new}}}}(\{x_{ij}\})
\end{align*}
\]

where $-ij$ denotes counts in which customer i in restaurant j is removed from the CRF. (If this empties a table, we also remove the table from the CRF, along with the dish on it.)

- The terms $f_{k}(\{x_{ij}\})$ are defined as follows

\[
f_{k}(\{x_{ij}\}_{ij \in D}) = \frac{\int h(\theta) \prod_{i'j' \in D_k \cup D} p(x_{i'j'} | \theta) d\theta}{\int h(\theta) \prod_{i'j' \in D_k \setminus D} p(x_{i'j'} | \theta) d\theta}
\]

where D_K denotes the set of indices associated with dish k.

B. Leibe
Inference for HDP: CRF Sampler

- Procedure (cont’d)

 2. Resample k_{jt} (Gibbs update for the dish)

 $k_{jt} = \begin{cases}
 k & \text{with prob. } \propto \frac{m^{-j}_k}{m^{-j}_k + \gamma} f_k(\{x_{ij} : t_{ij} = t\}) \\
 k_{\text{new}} & \text{with prob. } \propto \frac{\gamma}{m^{-j}_k + \gamma} f_{k_{\text{new}}}(\{x_{ij} : t_{ij} = t\})
 \end{cases}$

- Remarks

 - Computational cost of Gibbs updates is dominated by computation of the marginal conditional probabilities $f_k(\cdot)$.
 - Still, the number of possible events that can occur at one Gibbs step is one plus the total number of tables and dishes in all restaurants that are ancestors of j.
 - This number can get quite large in deep or wide hierarchies...
Topics of This Lecture

• Hierarchical Dirichlet Processes
 - Recap
 - Chinese Restaurant Franchise
 - Gibbs sampling for HDPs
 - CRF Sampler

• Applications
 - Example: Document topic modeling
 - Latent Dirichlet Allocation (LDA)
Applications

- Example: Document topic modelling
 - Topic: probability distribution over a set of words
 - Model each document as a probability distribution over topics.

CARSON, Calif., April 3 - Nissan Motor Corp said it is raising the suggested retail price for its cars and trucks sold in the United States by 1.9 pct, or an average 212 dollars per vehicle, effective April 6....

DETROIT, April 3 - Sales of U.S.-built new cars surged during the last 10 days of March to the second highest levels of 1987. Sales of imports, meanwhile, fell for the first time in years, succumbing to price hikes by foreign carmakers....

10% Auto industry
15% Market economy
5% US geography
70% Plain old English

10% Auto industry
40% Market economy
5% US geography
45% Plain old English
Applications

- Latent Dirichlet Allocation
 - Popular topic modelling approach with fixed number of topics k

 [Blei et al., 2003]

 - Random variables
 - A word is represented as a multinomial random variable w
 - A topic is represented as a multinomial random variable z
 - A document is represented as a Dirichlet random variable θ
Applications

- HDPs can be used to define a BNP version of LDA
 - Number of topics is open-ended
 - Multiple infinite mixture models, linked via shared topic distribution.

⇒ HDP-LDA avoids the need for model selection.
Applications

- Model the evolution of topics over time

"Theoretical Physics"

FORCE

RELATIVITY

LASER

"Neuroscience"

OXYGEN

NERVE

NEURON

Image source: David Blei
Applications

- Model connection between topics
Applications

- Image auto-annotation

- SKY WATER TREE MOUNTAIN PEOPLE
- SCOTLAND WATER FLOWER HILLS TREE
- SKY WATER BUILDING PEOPLE WATER
- FISH WATER OCEAN TREE CORAL
- PEOPLE MARKET PATTERN TEXTILE DISPLAY
- BIRDS NEST TREE BRANCH LEAVES

Image source: David Blei
Applications

• There are many other generalizations I didn’t talk about
 - Dependent DPs
 - Nested DPs
 - Pitman-Yor Processes (2-parameter extension of DPs)
 - Infinite HMMs
 - ...

• And some that I will talk about in Lecture 16...
 - Infinite Latent Factor Models
 - Beta Processes
 - Indian Buffet Process
 - Hierarchical Beta Process
References and Further Reading

• Unfortunately, there are currently no good introductory textbooks on Dirichlet Processes. We will therefore post a number of tutorial papers on their different aspects.

 ➢ One of the best available general introductions

 ➢ A tutorial on Hierarchical DPs

 ➢ Good overview of MCMC methods for DPMMs