Advanced Machine Learning
Lecture 18

Support Vector Regression & Co.

16.01.2013

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de/
leibe@vision.rwth-aachen.de
This Lecture: *Advanced Machine Learning*

- **Regression Approaches**
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Kernels (Kernel Ridge Regression)
 - Gaussian Processes

- **Bayesian Estimation & Bayesian Non-Parametrics**
 - Prob. Distributions, Approx. Inference
 - Mixture Models & EM
 - Dirichlet Processes
 - Latent Factor Models
 - Beta Processes

- **SVMs and Structured Output Learning**
 - SVMs, SVDD, SV Regression
 - Large-margin Learning
Topics of This Lecture

- Recap: Support Vector Machines
 - Discussion & Analysis

- Other Kernel Methods
 - Kernel PCA
 - Kernel k-Means Clustering

- Support Vector Data Description (1-class SVMs)
 - Motivation
 - Definition
 - Applications

- Support Vector Regression
 - Error function
 - Primal form
 - Dual form
Recap: SVM - Analysis

- Traditional soft-margin formulation
 \[
 \min_{\mathbf{w} \in \mathbb{R}^D, \xi_n \in \mathbb{R}^+} \quad \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^{N} \xi_n
 \]

 subject to the constraints
 \[
 t_n y(x_n) \geq 1 - \xi_n
 \]

 “Maximize the margin”

 “Most points should be on the correct side of the margin”

- Different way of looking at it
 > We can reformulate the constraints into the objective function.

 \[
 \min_{\mathbf{w} \in \mathbb{R}^D} \quad \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^{N} [1 - t_n y(x_n)]_+
 \]

 \(L_2\) regularizer

 “Hinge loss”

 where \([x]_+ := \max\{0,x\}\).
Recap: SVM - Discussion

• SVM optimization function

\[
\min_{\mathbf{w} \in \mathbb{R}^D} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^{N} [1 - t_n y(\mathbf{x}_n)]_+
\]

L₂ regularizer \hspace{2cm} \text{Hinge loss}

• Hinge loss enforces sparsity
 - Only a \textbf{subset of training data points} actually influences the decision boundary.
 - This is different from sparsity obtained through a regularizer! There, only a \textbf{subset of input dimensions} are used.
 - Unconstrained optimization, but non-differentiable function.
 - Solve, e.g. by \textit{subgradient descent}
 - Currently most efficient: \textit{stochastic gradient descent}

Slide adapted from Christoph Lampert
Outline of the Remaining Lectures

- *We will generalize the SVM idea in several directions...*

- Other Kernel methods
 - Kernel PCA
 - Kernel k-Means

- Other Large-Margin Learning formulations
 - Support Vector Data Description (one-class SVMs)
 - Support Vector Regression

- Structured Output Learning
 - General loss functions
 - General structured outputs
 - Structured Output SVM
 - Example: Multiclass SVM
Topics of This Lecture

- Recap: Support Vector Machines
 - Discussion & Analysis

- Other Kernel Methods
 - Kernel PCA
 - Kernel k-Means Clustering

- Support Vector Data Description (1-class SVMs)
 - Motivation
 - Definition
 - Applications

- Support Vector Regression
 - Error function
 - Primal form
 - Dual form
Recap: PCA

- **PCA procedure**
 - Given samples $x_n \in \mathbb{R}^d$, PCA finds the directions of maximal covariance. Without loss of generality assume that $\sum_n x_n = 0$.
 - The PCA directions e_1, \ldots, e_d are the eigenvectors of the covariance matrix
 $$C = \frac{1}{N} \sum_{n=1}^{N} x_n x_n^T$$
 sorted by their eigenvalue.
 - We can express x_n in PCA space by
 $$F(x_n) = \sum_{k=1}^{K} \langle x_n, e_k \rangle e_k$$
 - **Lower-dim. coordinate mapping:**
 $$x_n \mapsto \begin{pmatrix}
\langle x_n, e_1 \rangle \\
\langle x_n, e_2 \rangle \\
\ldots \\
\langle x_n, e_K \rangle
\end{pmatrix} \in \mathbb{R}^K$$

Slide credit: Christoph Lampert
Kernel-PCA

- **Kernel-PCA procedure**
 - Given samples $\mathbf{x}_n \in \mathcal{X}$, kernel $\mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with an implicit feature map $\phi: \mathcal{X} \to \mathcal{H}$. Perform PCA in the Hilbert space \mathcal{H}.
 - The kernel-PCA directions e_1, \ldots, e_d are the eigenvectors of the covariance operator

 $\mathbf{C} = \frac{1}{N} \sum_{n=1}^{N} \phi(\mathbf{x}_n)\phi(\mathbf{x}_n)^T$

 sorted by their eigenvalue.

- Lower-dim. coordinate mapping: $\mathbf{x}_n \mapsto \begin{pmatrix} \langle \phi(\mathbf{x}_n), e_1 \rangle \\
\langle \phi(\mathbf{x}_n), e_2 \rangle \\
\vdots \\
\langle \phi(\mathbf{x}_n), e_K \rangle \end{pmatrix} \in \mathbb{R}^K$
Kernel-PCA

- **Kernel-PCA procedure**
 - Given samples $\mathbf{x}_n \in \mathcal{X}$, kernel $\mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ with an implicit feature map $\phi: \mathcal{X} \rightarrow \mathcal{H}$. Perform PCA in the Hilbert space \mathcal{H}.
 - Equivalently, we can use the eigenvectors e'_k and eigenvalues λ_k of the kernel matrix
 \[
 K = \left(\langle \phi(\mathbf{x}_m), \phi(\mathbf{x}_n) \rangle \right)_{m,n=1,...,N} = \left(k(\mathbf{x}_m, \mathbf{x}_n) \right)_{m,n=1,...,N}
 \]
 - Coordinate mapping:
 \[
 \mathbf{x}_n \mapsto (\sqrt{\lambda_1}e'_1, \ldots, \sqrt{\lambda_K}e'_K)
 \]
Example: Image Superresolution

- **Training procedure**
 - Collect high-res face images
 - Use KPCA with RBF-kernel to learn non-linear subspaces

- **For new low-res image:**
 - Scale to target high resolution
 - Project to closest point in face subspace

Reconstruction in r dimensions
Kernel k-Means Clustering

- Kernel PCA is more than just non-linear versions of PCA
 - PCA maps \mathbb{R}^d to $\mathbb{R}^{d'}$, e.g., to remove noise dimensions.
 - Kernel-PCA maps $\mathcal{X} \rightarrow \mathbb{R}^{d'}$, so it provides a vectorial representation of non-vectorial data.

 \Rightarrow We can apply algorithms that only work in vector spaces to data that is not in a vector representation.

- Example: k-Means clustering
 - Given $x_1, \ldots, x_n \in \mathcal{X}$.
 - Choose a kernel function $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$.
 - Apply kernel-PCA to obtain vectorial $v_1, \ldots, v_n \in \mathbb{R}^{d'}$.
 - Cluster $v_1, \ldots, v_n \in \mathbb{R}^{d'}$ using K-Means.

 $\Rightarrow x_1, \ldots, x_n$ are clustered based on the similarity defined by k.
Example: Unsupervised Object Categorization

- Automatically group images that show similar objects
 - Represent images by bag-of-word histograms
 - Perform Kernel k-Means Clustering
 => Observation: Clusters get better if we use a good image kernel (e.g., χ^2) instead of plain k-Means (linear kernel).

Topics of This Lecture

• Recap: Support Vector Machines
 ➢ Discussion & Analysis

• Other Kernel Methods
 ➢ Kernel PCA
 ➢ Kernel k-Means Clustering

• Support Vector Data Description (1-class SVMs)
 ➢ Motivation
 ➢ Definition
 ➢ Applications

• Support Vector Regression
 ➢ Error function
 ➢ Primal form
 ➢ Dual form
One-Class SVMs

• Motivation
 ➢ For unlabeled data, we are interested in detecting outliers, i.e. samples that lie far away from most of the other samples.

• Problem statement
 ➢ For samples x_1, \ldots, x_N, find the smallest ball (center c, radius R) that contains “most” of the samples.
 ➢ “Most” again means that we allow some points to have slack.
One-Class SVMs

• Formalization

 Solve

 \[
 \min_{R \in \mathbb{R}, \mathbf{c} \in \mathbb{R}^D, \xi_n \in \mathbb{R}^+} \quad R + \frac{1}{\nu N} \sum_{n=1}^{N} \xi_n
 \]

 subject to

 \[
 \| \mathbf{x}_n - \mathbf{c} \|^2 \leq R^2 + \xi_n \quad \text{for } n = 1, \ldots, N
 \]

 where \(\nu \in (0,1) \) upper bounds the number of outliers.
One-Class SVMs

- Again apply the kernel trick
 - Use a kernel \(k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \) with an implicit feature map \(\phi: \mathcal{X} \rightarrow \mathcal{H} \).
 - Do outlier detection for \(\phi(x_1), \ldots, \phi(x_N) \):
 - Find the smallest ball (center \(c \in \mathcal{H} \), radius \(R \)) that contains “most” of the samples.

- Solve

\[
\min_{R \in \mathbb{R}, \ c \in \mathcal{H}, \ \xi_n \in \mathbb{R}^+} \quad R + \frac{1}{\nu N} \sum_{n=1}^{N} \xi_n \\
\text{subject to} \quad \| \phi(x_n) - c \|^2 \leq R^2 + \xi_n \quad \text{for } n = 1, \ldots, N
\]
One-Class SVM

- **Solution**
 - The **representer theorem** states that we can write the solution only in terms of the kernel $k(x_n, x_m)$ as

 $$
c = \sum_{n=1}^{N} a_n \phi(x_n)
 $$

 - where again we know from the KKT conditions that for each point x_n, either the constraint is active (i.e., the point is on the circle R) or the Lagrange multiplier $a_n = 0$.

 ⇒ Sparse solution, depends only on few data points, the support vectors.
 - Because of this, the formulation is called **Support Vector Data Description (SVDD)** or one-class SVM.

 ⇒ Often used for outlier/anomaly detection.
Example: Steganalysis

- Steganography
 - Hide data in other data (e.g. in images)
 - E.g., flip some least significant bits

- Steganalysis
 - Given any data, find out if some data is hidden

Original

With 23’300 hidden bits
Example: Steganalysis

- Possible procedure
 - Compute image statistics (color wavelet coefficients)
 - Train SVDD with RBF-kernel
 - Identified outlier images are suspicious candidates

S. Lyu, H. Farid. Steganalysis using color wavelet statistics and one-class support vector machines, SPIE EI, 2004

Slide adapted from Christoph Lampert
Topics of This Lecture

- Recap: Support Vector Machines
 - Discussion & Analysis

- Other Kernel Methods
 - Kernel PCA
 - Kernel k-Means Clustering

- Support Vector Data Description (1-class SVMs)
 - Motivation
 - Definition
 - Applications

- Support Vector Regression
 - Error function
 - Primal form
 - Dual form
SVMs for Regression

- **Linear regression**
 - Minimize a regularized quadratic error function
 \[\frac{1}{2} \sum_{n=1}^{N} \{y_n - t_n\}^2 + \frac{\lambda}{2} \|w\|^2 \]

- **Problem**
 - Sensitive to outliers, because the quadratic error function penalizes large residues.
 - This is the case even for (Kernel) Ridge Regression, although regularization helps.
SVMs for Regression

- Obtaining sparse solutions
 - Define an ϵ-insensitive error function
 \[
 E_\epsilon(y(x) - t) = \begin{cases}
 0, & \text{if } |y(x) - t| < \epsilon \\
 |y(x) - t| - \epsilon, & \text{otherwise}
 \end{cases}
 \]
 - and minimize the following regularized function
 \[
 C \sum_{n=1}^{N} E_\epsilon(y_n - t_n) + \frac{1}{2} \|w\|^2
 \]
Dealing with Noise and Outliers

- Introduce slack variables
 - We now need two slack variables \(\xi_n \geq 0 \) and \(\hat{\xi}_n \geq 0 \).
 - A target point lies in the \(\epsilon \)-tube if \(y_n - \epsilon \leq t_n \leq y_n + \epsilon \).
 - The corresponding conditions are

\[
\begin{align*}
t_n & \leq y(x_n) + \epsilon + \xi_n \\
t_n & \geq y(x_n) - \epsilon - \hat{\xi}_n
\end{align*}
\]
Dealing with Noise and Outliers

- Optimization with slack variables
 - The error function can then be rewritten as
 \[C \sum_{n=1}^{N} [|y(x_n) - t_n| - \epsilon]_+ + \frac{1}{2}||w||^2 \]
 - Using the conditions for the slack variables, we obtain
 \[t_n \leq y(x_n) + \epsilon + \xi_n \quad \Rightarrow \quad \xi_n \geq -(y(x_n) - t_n) - \epsilon \]
 \[t_n \geq y(x_n) - \epsilon - \hat{\xi}_n \quad \Rightarrow \quad \hat{\xi}_n \geq (y(x_n) - t_n) - \epsilon \]
 - And thus
 \[C \sum_{n=1}^{N} (\xi_n + \hat{\xi}_n) + \frac{1}{2}||w||^2 \]
 \[\xi_n \geq 0 \]
 \[\hat{\xi}_n \geq 0 \]
Support Vector Regression - Primal Form

- **Lagrangian primal form**

\[
L_p = C \sum_{n=1}^{N} (\xi_n + \hat{\xi}_n) + \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} (\mu_n \xi_n + \hat{\mu}_n \hat{\xi}_n) \\
- \sum_{n=1}^{N} a_n (\epsilon + \xi_n + y_n - t_n) - \sum_{n=1}^{N} \hat{a}_n (\epsilon + \hat{\xi}_n - y_n + t_n)
\]

- **Solving for the variables**

\[
\frac{\partial L}{\partial w} = 0 \Rightarrow w = \sum_{n=1}^{N} (a_n - \hat{a}_n) \phi(x_n) \\
\frac{\partial L}{\partial \xi_n} = 0 \Rightarrow a_n + \mu_n = C
\]

\[
\frac{\partial L}{\partial b} = 0 \Rightarrow \sum_{n=1}^{N} (a_n - \hat{a}_n) = 0 \\
\frac{\partial L}{\partial \hat{\xi}_n} = 0 \Rightarrow \hat{a}_n + \hat{\mu}_n = C
\]
Support Vector Regression - Dual Form

• From this, we can derive the dual form

 $$L_d(a, \hat{a}) = -\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} (a_n - \hat{a}_n)(a_m - \hat{a}_m)k(x_n, x_m)$$

 $$-\epsilon \sum_{n=1}^{N} (a_n + \hat{a}_n) + \sum_{n=1}^{N} (a_n - \hat{a}_n)t_n$$

 under the conditions

 $$0 \leq a_n \leq C$$
 $$0 \leq \hat{a}_n \leq C$$

 Predictions for new inputs are then made using

 $$y(x) = \sum_{n=1}^{N} (a_n - \hat{a}_n)k(x, x_n) + b$$
KKT Conditions

• KKT conditions

\[a_n(\epsilon + \xi_n + y(x_n) - t_n) = 0 \]
\[\hat{a}_n(\epsilon + \hat{\xi}_n - y(x_n) + t_n) = 0 \]
\[(C - a_n)\xi_n = 0 \]
\[(C - \hat{a}_n)\hat{\xi}_n = 0 \]

• Observations

- A coefficient \(a_n \) can only be non-zero if the first constraint is active, i.e., if a point lies either on or above the \(\epsilon \)-tube.
- Similarly, a non-zero coefficient \(\hat{a}_n \) must be on/below the \(\epsilon \)-tube.
- The first two constraints cannot both be active at the same time.
 \[\Rightarrow \] Either \(a_n \) or \(\hat{a}_n \) or both must be zero.
- The support vectors are those points for which \(a_n \neq 0 \) or \(\hat{a}_n \neq 0 \), i.e., the points on the boundary of or outside the \(\epsilon \)-tube.
Discussion

- Slightly different interpretation
 - For SVMs, classification function depends only on SVs.
 - For SVR, support vectors mark outlier points. SVR tries to limit the effect of those outliers on the regression function.
 - Nevertheless, the prediction $y(x)$ only depends on the support vectors.

Image source: Christoph Lampert
Example: Head Pose Estimation

- Procedure
 - Detect faces in image
 - Compute gradient representation of face region
 - Train support vector regression for yaw, tilt (separately)

References and Further Reading

- More information on Kernel PCA can be found in Chapter 12.3 of Bishop’s book. Support Vector Regression is described in Chapter 7.1. You can also look at Schölkopf & Smola (some chapters available online).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

B. Schölkopf, A. Smola
Learning with Kernels
MIT Press, 2002
http://www.learning-with-kernels.org/