Machine Learning – Lecture 14
Optimization / Tricks of the Trade
04.12.2019

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de

Course Outline
• Fundamentals
  Bayes Decision Theory
  Probability Density Estimation
• Classification Approaches
  Linear Discriminants
  Support Vector Machines
  Ensemble Methods & Boosting
  Random Forests
• Deep Learning
  Foundations
  Convolutional Neural Networks
  Recurrent Neural Networks

Recap: Computational Graphs
Forward-Mode Differentiation
Apply operator \(\frac{\partial}{\partial x} \) to every node.

Reverse-Mode Differentiation
Apply operator \(\frac{\partial Z}{\partial y} \) to every node.

Forward differentiation needs one pass per node. Reverse-mode differentiation can compute all derivatives in one single pass.
⇒ Speed-up in \(O(\#inputs) \) compared to forward differentiation!

Recap: Automatic Differentiation
• Approach for obtaining the gradients
 \(y_1(x_1), y_2(x_2), \ldots, y_n(x_n) \)

Convex hulls:
 Convert the network into a computational graph.
 Each new layer/module just needs to specify how it affects the forward and backward passes.
 Apply reverse-mode differentiation.
⇒ Very general algorithm, used in today’s Deep Learning packages

Recap: Choosing the Right Learning Rate
• Convergence of Gradient Descent
 Simple 1D example
 \(W^{(r-1)} = W^{(r)} - \eta \frac{dE}{dW} \)
 What is the optimal learning rate \(\eta_{opt} \)?
 If \(E \) is quadratic, the optimal learning rate is given by the inverse of the Hessian
 \(\eta_{opt} = \left(\frac{d^2E}{dW^2} \right)^{-1} \)
 Advanced optimization techniques try to approximate the Hessian by a simplified form.
 If we exceed the optimal learning rate, bad things happen!

Topics of This Lecture
• Optimization
  Momentum
  RMS Prop
  Effect of optimizers
• Tricks of the Trade
  Shuffling
  Data Augmentation
  Normalization
• Nonlinearities
• Initialization
• Advanced techniques
  Batch Normalization
  Dropout
Batch vs. Stochastic Learning

- **Batch Learning**
 - Simplest case: steepest decent on the error surface.
 - Updates perpendicular to contour lines.

- **Stochastic Learning**
 - Simplest case: zig-zag around the direction of steepest descent.
 - Updates perpendicular to constraints from training examples.

Why Learning Can Be Slow

- If the inputs are correlated
 - The ellipse will be very elongated.
 - The direction of steepest descent almost perpendicular to the direction towards the minimum!

This is just the opposite of what we want!

The Momentum Method

- **Idea**
 - Instead of using the gradient to change the position of the weight “particle”, use it to change the velocity.

- **Intuition**
 - Example: Ball rolling on the error surface.
 - It starts off following the error surface, but once it has accumulated momentum, it no longer does steepest decent.

- **Effect**
 - Dampen oscillations in directions of high curvature by combining gradients with opposite signs.
 - Build up speed in directions with a gentle but consistent gradient.

The Momentum Method: Implementation

- **Change in the update equations**
 - Effect of the gradient: increment the previous velocity, subject to a decay by $\alpha < 1$.
 \[
 \mathbf{v}(t) = \alpha \mathbf{v}(t-1) - \varepsilon \nabla E(\mathbf{w})
 \]
 - Set the weight change to the current velocity
 \[
 \Delta \mathbf{w} = \mathbf{v}(t)
 \]
 \[
 = \alpha \mathbf{v}(t-1) - \varepsilon \nabla E(\mathbf{w})
 \]

The Momentum Method: Behavior

- **Behavior**
 - If the error surface is a tilted plane, the ball reaches a terminal velocity
 \[
 \mathbf{v}(\infty) = \frac{1}{1 - \alpha} \left(-\frac{\partial E}{\partial \mathbf{w}} \right)
 \]
 - If the momentum α is close to 1, this is much faster than simple gradient descent.
 - At the beginning of learning, there may be very large gradients.
 - Use a small momentum initially (e.g., $\alpha = 0.5$).
 - Once the large gradients have disappeared and the weights are stuck in a ravine, the momentum can be smoothly raised to its final value (e.g., $\alpha = 0.90$ or even $\alpha = 0.99$).
 - This allows us to learn at a rate that would cause divergent oscillations without the momentum.

Separate, Adaptive Learning Rates

- **Problem**
 - In multilayer nets, the appropriate learning rates can vary widely between weights.
 - The magnitudes of the gradients are often very different for the different layers, especially if the initial weights are small.
 - Gradients can get very small in the early layers of deep nets.
 - The fan-in of a unit determines the size of the “overshoot” effect when changing multiple weights simultaneously to correct the same error.
 - The fan-in often varies widely between layers.

- **Solution**
 - Use a global learning rate, multiplied by a local gain per weight (determined empirically).
Better Adaptation: RMSProp

- **Motivation**
 - The magnitude of the gradient can be very different for different weights and can change during learning.
 - This makes it hard to choose a single global learning rate.
 - For batch learning, we can deal with this by only using the sign of the gradient, but we need to generalize this for minibatches.

- **Idea of RMSProp**
 - Divide the gradient by a running average of its recent magnitude
 \[\text{MeanSq}(w_{ij}, t) = 0.9 \text{MeanSq}(w_{ij}, t-1) + 0.1 \left(\frac{\partial E}{\partial w_{ij}}(t) \right)^2 \]
 - Divide the gradient by \(\sqrt{\text{MeanSq}(w_{ij}, t)} \).

Other Optimizers

- **AdaGrad**
 - [Duchi '10]

- **AdaDelta**
 - [Zeiler '12]

- **Adam**
 - [Ba & Kingma '14]

- **Notes**
 - All of those methods have the goal to make the optimization less sensitive to parameter settings.
 - Adam is currently becoming the quasi-standard

Example: Behavior in a Long Valley

![Image source: Alec Radford, http://imgur.com/a/Hqolp](image)

Example: Behavior around a Saddle Point

![Image source: Alec Radford, http://imgur.com/a/Hqolp](image)

Visualization of Convergence Behavior

![Image source: Alec Radford, http://imgur.com/SmDARzn](image)

Trick: Patience

- Saddle points dominate in high-dimensional spaces!

![Image source: Yoshua Bengio](image)
Reducing the Learning Rate

• Final improvement step after convergence is reached
 - Reduce learning rate by a factor of 10.
 - Continue training for a few epochs.
 - Do this 1-3 times, then stop training.

• Effect
 - Turning down the learning rate will reduce the random fluctuations in the error due to different gradients on different minibatches.

• Be careful: Do not turn down the learning rate too soon!
 - Further progress will be much slower/impossible after that.

Summary

• Deep multi-layer networks are very powerful.
• But training them is hard!
 - Complex, non-convex learning problem
 - Local optimization with stochastic gradient descent
• Main issue: getting good gradient updates for the early layers of the network
 - Many seemingly small details matter!
 - Weight initialization, normalization, data augmentation, choice of nonlinearities, choice of learning rate, choice of optimizer,…
 - In the following, we will take a look at the most important factors

Topics of This Lecture

• Optimization
 - Momentum
 - RMS Prop
 - Effect of optimizers
• Tricks of the Trade
 - Shuffling
 - Data Augmentation
 - Normalization
• Nonlinearities
• Initialization
• Advanced techniques
 - Batch Normalization
 - Dropout

Data Augmentation

• Idea
 - Augment original data with synthetic variations to reduce overfitting
• Example augmentations for images
 - Cropping
 - Zooming
 - Flipping
 - Color PCA

Shuffling the Examples

• Ideas
 - Networks learn fastest from the most unexpected sample.
 - It is advisable to choose a sample at each iteration that is most unfamiliar to the system.
 - E.g. a sample from a different class than the previous one.
 - This means, do not present all samples of class A, then all of class B.
 - A large relative error indicates that an input has not been learned by the network yet, so it contains a lot of information.
 - It can make sense to present such inputs more frequently.
 - But: be careful, this can be disastrous when the data are outliers.
• Practical advice
 - When working with stochastic gradient descent or minibatches, make use of shuffling.
Normalization

- **Motivation**
 - Consider the Gradient Descent update steps
 \[w_{kj}^{t+1} = w_{kj}^t - \eta \frac{\partial E(w)}{\partial w_{kj}} \]
 - From backpropagation, we know that
 \[\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial z_j} \frac{\partial z_j}{\partial w_{ij}} = \frac{\partial E}{\partial z_j} \]
 - When all of the components of the input vector \(y_i \) are positive, all of the updates of weights that feed into a node will be of the same sign.
 - Weights can only all increase or decrease together.
 - Slow convergence

Normalization of the Inputs

- **Convergence is fastest if**
 - The mean of each input variable over the training set is zero.
 - The inputs are scaled such that all have the same covariance.
 - Input variables are uncorrelated if possible.

- **Advisable normalization steps** *(for MLPs only, not for CNNs)*
 - Normalize all inputs that an input unit sees to zero-mean, unit covariance.
 - If possible, try to decorrelate them using PCA (also known as Karhunen-Loève expansion).

Commonly Used Nonlinearities

- **Sigmoid**
 \[g(a) = \sigma(a) = \frac{1}{1+\exp(-a)} \]
- **Hyperbolic tangent**
 \[g(a) = \tanh(a) = 2\sigma(2a) - 1 \]
- **Softmax**
 \[g(a) = \frac{\exp(-a_j)}{\sum_i \exp(-a_i)} \]

Choosing the Right Sigmoid

- **Normalization is also important for intermediate layers**
 - Symmetric sigmoids, such as \(\tanh \), often converge faster than the standard logistic sigmoid.
 - Recommended sigmoid:
 \[f(x) = 1.7159 \tanh \left(\frac{x}{2} \right) \]
 - When used with transformed inputs, the variance of the outputs will be close to 1.
Usage
- **Output nodes**
 - Typically, a sigmoid or tanh function is used here.
 - Sigmoid for nice probabilistic interpretation (range [0,1]).
 - tanh for regression tasks.
- **Internal nodes**
 - Historically, tanh was most often used.
 - tanh is better than sigmoid for internal nodes, since it is already centered.
 - Internally, tanh is often implemented as piecewise linear function (similar to hard tanh and maxout).
 - More recently: ReLU often used for classification tasks.

Effect of Sigmoid Nonlinearities
- **Effects of sigmoid/tanh function**
 - Linear behavior around 0
 - Saturation for large inputs
- **If all parameters are too small**
 - Variance of activations will drop in each layer
 - Sigmoids are approximately linear close to 0
 - Good for passing gradients through, but...
 - Gradual loss of the nonlinearity
 - No benefit of having multiple layers
- **If activations become larger and larger**
 - They will saturate and gradient will become zero

Another Note on Error Functions
- **Squared error on sigmoid/tanh output function**
 - Avoids penalizing “too correct” data points.
 - But: almost zero gradient for confidently incorrect classifications!
 - Do not use L_2 loss with sigmoid outputs (instead: cross-entropy)!

Extension: ReLU
- **Another improvement for learning deep models**
 - Use Rectified Linear Units (ReLU)
 - $g(a) = \max(0, a)$
 - Effect: gradient is propagated with a constant factor
 - $\frac{\partial g(a)}{\partial a} = \begin{cases} 1, & a > 0 \\ 0, & \text{else} \end{cases}$
 - Advantages
 - Much easier to propagate gradients through deep networks.
 - We do not need to store the ReLU output separately
 - Reduction of the required memory by half compared to tanh!
 - ReLU has become the de-facto standard for deep networks.

Further Extensions
- **Rectified linear unit (ReLU)**
 - $g(a) = \max(0, a)$
- **Leaky ReLU**
 - $g(a) = \max(a, a)$
 - Avoids stuck-at-zero units
 - Weaker offset bias
- **ELU**
 - $g(a) = \begin{cases} a, & x < 0 \\ e^x - 1, & x \geq 0 \end{cases}$
 - No offset bias anymore
 - BUT: need to store activations

Extension: ReLU
- **Another improvement for learning deep models**
 - Use Rectified Linear Units (ReLU)
 - Leaky ReLU
 - $g(a) = \max(a, a)$
 - Avoids stuck-at-zero units
 - Weaker offset bias
 - ELU
 - $g(a) = \begin{cases} a, & x < 0 \\ e^x - 1, & x \geq 0 \end{cases}$
 - No offset bias anymore
 - BUT: need to store activations
Optimization

1. **W**

 If we do that for the above formula, we obtain **W**

Initialization

A popular heuristic (also the standard in Torch) was to use

\[\text{The recommended sigmoid} \] is used

Apparently, this guideline was either little known or misunderstood for a long time

- A popular heuristic (also the standard in Torch) was to use
 \[W \sim \mathcal{U} \left(\frac{1}{\sqrt{\text{fan-in}}} \right) \]
 This looks almost like LeCun’s rule. However...

- When sampling weights from a uniform distribution \([a, b] \)
 - Keep in mind that the standard deviation is computed as
 \[\sigma^2 = \frac{1}{12} (b - a)^2 \]
 - If we do that for the above formula, we obtain
 \[\sigma^2 = \frac{1}{\text{fan-in}} \left(\frac{1}{12} \right) = \frac{1}{12} \frac{1}{\text{fan-in}} \]
 \[\Rightarrow \text{Activations & gradients will be attenuated with each layer! (bad)} \]

Glorot Initialization

- **Motivation**
 - The starting values of the weights can have a significant effect on the training process.
 - Weights should be chosen randomly, but in a way that the sigmoid is primarily activated in its linear region.

- **Guideline** (from [LeCun et al., 1998] book chapter)
 - Assuming that
 - The training set has been normalized
 - The recommended sigmoid \(f(x) = 1.7159 \tanh \left(\frac{x}{2} \right) \)
 - Where the initial weights should be randomly drawn from a distribution (e.g., uniform or Normal) with mean zero and variance
 \[\sigma^2_{W} = \frac{1}{\text{fan-in}} \]
 where \(\text{fan-in} \) is the fan-in (connections into the node).

Analysis

- **Variance of neuron activations**
 - Suppose we have an input \(X \) with \(n \) components and a linear neuron with random weights \(W \) that splits out a number \(Y \):
 \[Y = W_1 X_1 + W_2 X_2 + \cdots + W_n X_n \]
 - What is the variance of \(Y \)?
 \[Y = \text{Var}(Y) = \text{Var}(W_1) \text{Var}(X_1) + \text{Var}(W_2) \text{Var}(X_2) + \cdots + \text{Var}(W_n) \text{Var}(X_n) \]
 - If the \(X_i \) and \(W_i \) are all i.i.d, then
 \[\text{Var}(Y) = \text{Var}(W_1 X_1 + W_2 X_2 + \cdots + W_n X_n) = n \text{Var}(W) \text{Var}(X) \]
 \[\Rightarrow \text{The variance of the output is the variance of the input, but scaled by} \ n \ \text{Var}(W) \]

- **Analysis (cont’d)**
 - **Variance of neuron activations**
 - If we want the variance of the input and output of a unit to be the same, then \(n \ \text{Var}(W) \) should be 1. This means
 \[\text{Var}(W) = \frac{1}{n} \]
 - If we do the same for the backpropagated gradient, we get
 \[\text{Var}(W) = \frac{1}{n_{\text{out}}} \]
 - As a compromise, Glorot & Bengio proposed to use
 \[\text{Var}(W) = \frac{2}{n_{\text{in}} + n_{\text{out}}} \]
 \[\Rightarrow \text{Randomly sample the weights with this variance. That’s it.} \]
Sidenote

- When sampling weights from a uniform distribution \([a, b]\)

 \[\sigma^2 = \frac{1}{12} (b - a)^2 \]

 - Again keep in mind that the standard deviation is computed as

 \[\sigma^2 = \frac{1}{12} (b - a)^2 \]

 - Glorot initialization with uniform distribution

 \[W \sim U - \frac{\sqrt{6}}{\sqrt{\text{fan} \text{ in}} + \sqrt{\text{fan} \text{ out}}} \]

 - Or when only taking into account the fan-in

 \[W \sim U - \frac{\sqrt{6}}{\sqrt{\text{fan} \text{ in}}} \]

 - If this had been implemented correctly in Torch from the beginning, the Deep Learning revolution might have happened a few years earlier…

Extension to ReLU

- Important for learning deep models

 - Rectified Linear Units (ReLU)

 \[g(a) = \max \{ 0, a \} \]

 - Effect: gradient is propagated with a constant factor

 \[\frac{\partial g(a)}{\partial a} = \begin{cases} 1, & a > 0 \\ 0, & \text{else} \end{cases} \]

 - We can also improve them with proper initialization

 - However, the Glorot derivation was based on tanh units, linearity assumption around zero does not hold for ReLU.

 - He et al. made the derivations, derived to use instead

Topics of This Lecture

- Recap: Optimization

 - Effect of optimizers

- Tricks of the Trade

 - Shuffling
 - Data Augmentation
 - Normalization

- Nonlinearities

- Initialization

- Advanced techniques

 - Batch Normalization
 - Dropout

Batch Normalization [Ioffe & Szegedy '14]

- Motivation

 - Optimization works best if all inputs of a layer are normalized.

- Idea

 - Introduce intermediate layer that centers the activations of the previous layer per minibatch.

 - Introduce intermediate layer that centers the activations of the previous layer per minibatch.

 - I.e., perform transformations on all activations and undo those transformations when backpropagating gradients

 - Complication: centering + normalization also needs to be done at test time, but minibatches are no longer available at that point.

 - Learn the normalization parameters to compensate for the expected bias of the previous layer (usually a simple moving average)

- Effect

 - Much improved convergence (but parameter values are important!)

 - Widely used in practice

References and Further Reading

- More information on many practical tricks can be found in Chapter 1 of the book

 G. Montavon, G. B. Orr, K.R. Mueller (Eds.)
 Neural Networks: Tricks of the Trade

 Yann LeCun, Leon Bottou, Genevieve B. Orr, Klaus-Robert Mueller
References

- **ReLu**

- **Initialization**

References and Further Reading

- **Batch Normalization**

- **Dropout**