This Lecture: Advanced Machine Learning

- Regression Approaches
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Kernels (Kernel Ridge Regression)
 - Gaussian Processes
- Bayesian Estimation & Bayesian Non-Parametrics
 - Prob. Distributions, Approx. Inference
 - Mixture Models & EM
 - Dirichlet Processes
 - Latent Factor Models
 - Beta Processes
- SVMs and Structured Output Learning
 - SVMs, SVDD, SV Regression
 - Structured Output Learning

Recap: Grand Unified View

Predict structured output by maximization of a compatibility function

\[y = \arg \max_{y \in Y} F(x, y) \]

that is linear in a parameter vector \(w \).

Recap: Learning in Structured Models

- Problem statement
 - Given: parametric model (family): \(F(x, y) = \langle w, \phi(x, y) \rangle \)
 - prediction method: \(f(x) = \arg \max_{y \in Y} F(x, y) \)
 - training example pairs \(\{ (x_1, y_1), \ldots, (x_n, y_n) \} \subset \mathcal{X} \times \mathcal{Y} \)
 - Goal: determine „good“ parameter vector \(w \).
- What make a solution „good“?
 - Define a loss function
 \[\Delta : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+ \]
 such that \(\Delta(y', y) \) measures the loss/cost incurred by predicting \(y' \) when \(y \) is correct.
Recap: Popular Structured Loss Functions

- **Zero-one loss**
 - Definition: $\Delta(y, y') = \delta(y \neq y')$
 - “Every prediction that is not identical to the intended one is considered a mistake, and all mistakes are penalized equally.”
 - Most common loss for multi-class problems.
 - Less frequently used for structured prediction tasks.

- **Hierarchical multi-class loss**
 - Definition: $\Delta(y, y') = \frac{1}{2} \text{dist}_H(y, y')$
 - where H is a hierarchy over the classes in Y and $\text{dist}_H(y, y')$ measures the distance of y and y'.
 - Common way to incorporate information about label hierarchies in multi-class prediction problems.

Recap: Structured Output SVM

- **Slack formulation of S-SVM**
 - Solve $\min \mathbf{w} \in \mathbb{R}^D, \xi \in \mathbb{R}^N \frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{N} \sum_{n=1}^{N} \xi_n$
 - subject to $(\mathbf{w}, \phi(x_n, y_n)) \geq \Delta(y_n, y) + (\mathbf{w}, \phi(x_n, y)) - \xi_n$
 - for all $y \in \mathcal{Y} \setminus \{y_n\}$
 - Optimization problem very similar to normal SVM
 - Quadratic in \mathbf{w}, linear in ξ.
 - Constraints linear in \mathbf{w} and ξ.
 - Convex!
 - But there are $N|\mathcal{Y}| - 1$ constraints!
 - Numeric optimization needs some tricks, will be expensive.

Recap: Solving S-SVM Training

- Solving the S-SVM optimization
 - There are $N|\mathcal{Y}| - 1$ constraints!
 - But: Weight vector has only D degrees of freedom.
 - Slack variables have only N degrees of freedom.
 - $D+N$ constraints suffice to determine the optimal solution.
 - If we knew the set of relevant constraints in advance, we could solve the optimization efficiently.
 - Approximate the solution iteratively.

- **Cutting Plane training**
 - Delayed constraint generation technique
 - Search for the best weight vector and the set of active constraints simultaneously in an iterative manner.
 - Approximate solution with much faster runtime.

Recap: Cutting Plane Training

- **Cutting Plane algorithm**
 1. Start from an empty working set.
 2. In each iteration, solve the optimization problem for (\mathbf{w}, ξ') with only the constraints in the working set.
 3. Check for each sample if any of the $|\mathcal{Y}|$ constraints are violated.
 4. If not, we have found the optimal solution.
 5. Otherwise, add most violated constraints to the working set.
- **Speed-ups**
 - To achieve faster convergence, choose a tolerance $\epsilon > 0$ and require a constraint to be violated by at least ϵ.
 - Possible to prove convergence after $O(\frac{1}{\epsilon})$ steps with the guarantee that objective value at the solution differs only at most by ϵ from the global minimum.

Cutting Plane Training: Limitations

- **Cutting plane training**
 - Attractive, since it allows us to reuse existing components:
 - Ordinary SVM solvers
 - Algorithms for (loss-adapted) MAP prediction
 - However...
 - Convergence rate can be unsatisfactory, in particular for large values of ϵ.
 - Convergence after $O(\frac{1}{\epsilon^2})$ steps means: for a value of $\epsilon = 0.1$, we already need on the order of 100 steps.
 - This can be improved to $O(\frac{1}{\epsilon^3})$ with the recently introduced one-slack formulation.
Back to S-SVMs

- **One-slack S-SVM formulation**
 - Solve \(\min_{w, \xi} \frac{1}{2} ||w||^2 + C \xi \)
 - subject to \(\sum_{n=1}^{N} \Delta(y_n) + \langle w, \phi(x_n, y_n) \rangle - \langle w, \phi(x_n, y_n) \rangle \leq N \xi \)
 - Equivalent to \(n \)-slack \(S \)-SVM formulation
 - But only one common slack variable \(\xi \).
 - We now have \(|Y| \) constraints, so even more than \(n \)-slack.
 - However, cutting-plane optimization now achieves a solution \(\epsilon \)-close to the optimum in \(O(n) \) steps.
 - Significant reduction in training time for practical problems.

Example: Crammer-Singer Multiclass SVM

- **Procedure**
 - Define the joint feature space \(\mathcal{Y} = \{1, 2, \ldots, N\} \), \(\Delta(y, y') = \begin{cases} 1 & \text{for } y \neq y' \\ 0 & \text{otherwise} \end{cases} \)
 - \(\phi(x, y) = \begin{cases} 1 & \text{if } y = 1 \phi(x) \\ 2 & \text{if } y = 2 \phi(x) \\ \vdots & \text{if } y = N \phi(x) \end{cases} \)
 - Solve \(\min_{w, \xi} \frac{1}{2} ||w||^2 + \frac{C}{N} \sum_{n=1}^{N} \Delta(y_n, y') \)
 - subject to, for \(n = 1, \ldots, N \),
 - \(\langle w, \phi(x, y) \rangle - \langle w, \phi(x', y') \rangle \geq 1 - \xi \) for all \(y \in \mathcal{Y} \setminus \{y'\} \)
 - Classification: \(f(x) = \arg\max_{y \in \mathcal{Y}} \langle w, \phi(x, y) \rangle \)

Kernels in S-SVMs

- **Joint kernel function**
 - The \(S \)-SVM formulation is based on a joint feature map \(\phi(x, y) \), i.e., on pairs of \(\text{input, output} \).
 - We can now also define a joint kernel function for such mappings \(k: (X \times X) \times (X \times X) \rightarrow \mathbb{R} \) as follows
 - \(k((x, x'), (y, y')) = \langle \phi(x, y), \phi(x', y') \rangle \)
 - \(k \) measures similarities between \(\text{input, output} \) pairs.

- **Same advantages as for regular SVMs**
 - One does not need an explicit expression for the feature map \(\phi \).
 - It suffices if we can evaluate the kernel function for arbitrary arguments.
 - Specifically advantageous if the feature map is very high-dimensional.

Topics of This Lecture

- **Recap: Structured Output Learning**
 - General structured prediction
 - Structured Output SVM
 - Cutting plane training
 - Limitations
 - One-slack formulation
- **Application: Multi-class SVMs**
 - Crammer-Singer formulation
- **Kernels in S-SVMs**
 - Joint kernel function
 - Kernelized \(S \)-SVM
 - Application examples

- **Joint Kernel Functions**
 - What do joint kernel functions look like?
 - \(k((x, y), (x', y')) = \langle \phi(x, y), \phi(x', y') \rangle \)
 - As in graphical models: easier if \(\phi \) decomposes w.r.t. factors
 - \(\phi(x, y) = \phi_F(x, y_F) \)
 - Then the kernel \(k \) decomposes into a sum over factors
 - \(k((x, y), (x', y')) = \sum_{F \in \mathcal{F}} \langle \phi_F(x, y_F), \phi_F(x', y'_F) \rangle \)
 - \(\sum_{F \in \mathcal{F}} k_F((x, y_F), (x', y'_F)) \)
 - We can define kernels for each object type.
Example: Figure-Ground Segmentation

- Task with a grid structure
 \[(x, y) = (\text{top, right}), (\text{bottom, left})\]

- Typical kernels: arbitrary in \(x\), linear w.r.t. \(y\):
 - Unary factors
 \[k_p ((x_p, y_p), (x_p', y_p')) = k(x_p, x_p') \delta(y_p = y_p')\]
 with \(k(x, x')\) local image kernel, e.g. \(x^2\) or hist. intersection.
 - Pairwise factors
 \[k_{pq} ((y_p, y_q), (y_p', y_q')) = \delta(y_p = y_p') \delta(y_q = y_q')\]
 More powerful than all linear and argmax prediction still possible.

Example: Object Localization

- Object detection task
 \[(x, y) = (\text{left, bottom}), (\text{right, top})\]

- Only one factor that includes all \(x\) and \(y\):
 \[k ((x, y), (x', y')) = k_{\text{image}}(x, y)\]
 with \(k_{\text{image}}\) the image kernel and \(x_y\) is image region within box \(y\).

 \[\text{argmax-prediction is as difficult here as object localization with } k_{\text{image}}-\text{SVM!}\]

Kernelized S-SVM

- Dual formulation with kernels
 - Solve \(\alpha^* = \arg\max_{\alpha \in [0, 1]^N} \sum_{n=1}^{N} \alpha_n y_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{y \in Y} \alpha_n y_n K_{yy'}^{n}\)
 subject to, for \(n = 1, ..., N\),
 \[\sum_{y \in Y} \alpha_n y_n \leq C + \frac{y_n \alpha_n}{N}\]
 where \(K_{yy'} = K_{yy'}^{n} - K_{yy'}^{n'} + K_{yy}^{n'}\)
 and \(K_{yy}^{n} = k((x_n, y_n), (x_n', y_n'))\).
 - Decision function
 \[f(x) = \arg\max_{y \in Y} \sum_{n=1}^{N} \alpha_n y_n k((x_n, y_n'), (x, y))\]

Discussion and Analysis

- Analysis
 - Prediction function
 \[f(x) = \arg\max_{y \in Y} \sum_{n=1}^{N} \alpha_n y_n k((x_n, y_n'), (x, y))\]
 - In principle, this function might become infeasible to compute, since it contains a potentially exponential number of summands.
 - However, this is not a problem in practice, since the constraints enforce sparsity in the coefficients.
 \[\sum_{y \in Y} \alpha_n y_n \leq C + \frac{y_n \alpha_n}{N}\]
 \[\Rightarrow \text{For every } n = 1, ..., N, \text{most coefficients } \alpha_n \text{ for } y \in Y \text{ will be zero.}\]
 \[\Rightarrow \text{Possible to keep a working set over non-zero coefficients during optimization.}\]

Summary

- Given
 - Training set \(\{(x_1, y_1), ..., (x_N, y_N)\} \rightarrow X \times Y\)
 - Loss function \(\Delta : X \times Y \rightarrow R\).
- Task:
 - Learn parameter \(w\) for \(f(x) := \arg\max_{y \in Y} \phi(x, y)\) that minimizes expected loss on future data.
- S-SVM solution derived by maximum margin framework:
 - Enforce \textit{correct output} to be better than others by a margin :
 \[<w, \phi(x_n, y_n), y_n> - <w, \phi(x_n, y)> \text{ for all } y \in Y\]
 - Convex optimization problem, but non-differentiable
 - Many equivalent formulations \(\Rightarrow\) different training algorithms
 - Training needs repeated \(\arg\max\) prediction, no probabilistic inference

References and Further Reading

- Structured SVMs were first introduced here
- Additional details on Structured SVMs can be found in Chapter 6 of the following tutorial on Structured Learning