Recap: RGB Color Space

- Primaries are monochromatic lights (for monitors, they correspond to the three types of phosphors)
- **Subtractive matching** required for some wavelengths

Recap: Color Perception

- Rods and cones act as filters on the spectrum
 - To get the output of a filter, multiply its response curve by the spectrum, integrate over all wavelengths
 - Each cone yields one number
- Q: How can we represent an entire spectrum with 3 numbers?
 - A: We can’t! Most of the information is lost.
 - As a result, two different spectra may appear indistinguishable. Such spectra are known as metamer.

Recap: Color Sensing

- Such spectra are known as Human Luminance Sensitivity Function

Announcements

- Exercise sheet 3 will be made available this afternoon
 - Histogram based object recognition [today’s topic]
 - Mean-shift segmentation [Thursday’s topic]
 - The exercise will be next Tuesday.
 - Submit your results by Monday night.

- Demo competition
 - Design your own Computer Vision demo! (Based on the techniques from the lecture...)
 - Teams of up to 3 students
 - Demo day after the end of the semester
 - Will send around a poll for a suitable date...

Course Outline

- Image Processing Basics
 - Image Formation
 - Binary Image Processing
 - Linear Filters
 - Edge & Structure Extraction
 - Color
- Recognition
 - Global Representations
- Segmentation
- Local Features & Matching
- Object Recognition and Categorization
- 3D Reconstruction
- Motion and Tracking
Recap: CIE XYZ Color Space

- Established in 1931 by the International Commission on Illumination
- Primaries are imaginary, but matching functions are everywhere positive
- 2D visualization: draw \((x, y)\), where \(x = X/(X+Y+Z)\), \(y = Y/(X+Y+Z)\)

Recap: HSV Color Space

- Hue, Saturation, Value (Brightness)
- Nonlinear - reflects topology of colors by coding hue as an angle.
- Matlab: `hsv2rgb`, `rgb2hsv`.

Color as Low-Level Cue

- Color histograms: Use distribution of colors to describe image
- No spatial information - invariant to translation, rotation, scale
- This lecture will explain how this can be done...

Topics of This Lecture

- Object Recognition
 - Appearance-based recognition
 - Global representations
 - Color histograms
- Recognition using histograms
 - Histogram comparison measures
 - Histogram backprojection
 - Multidimensional histograms
- Probabilistic interpretation
 - Probability density estimation
 - Recognition from local samples
 - Extension: recognition of multiple objects in an image
 - Extension: colored derivatives

Object Recognition
Challenges

- Viewpoint changes
- Translation
- Image-plane rotation
- Scale changes
- Out-of-plane rotation
- Illumination
- Noise
- Clutter
- Occlusion

Appearance-Based Recognition

- Basic assumption
 - Objects can be represented by a set of images (“appearances”).
 - For recognition, it is sufficient to just compare the 2D appearances.
 - No 3D model is needed.

⇒ Fundamental paradigm shift in the 90’s

Global Representation

- Idea
 - Represent each object (view) by a global descriptor.
 - For recognizing objects, just match the descriptors.
 - Some modes of variation are built into the descriptor, the others have to be incorporated in the training data.
 - e.g. a descriptor can be made invariant to image-plane rotations.
 - Other variations:
 - Viewpoint changes
 - Translation
 - Scale changes
 - Out-of-plane rotation
 - Illumination
 - Noise
 - Clutter
 - Occlusion

Color: Use for Recognition

- Color:
 - Color stays constant under geometric transformations
 - Local feature
 - Color is defined for each pixel
 - Robust to partial occlusion

- Idea
 - Directly use object colors for recognition
 - Better: use statistics of object colors

Color Histograms

- Color statistics
 - Here: RGB as an example
 - Given: tristimulus R,G,B for each pixel
 - Compute 3D histogram
 - \(H(R,G,B) = \# \text{pixels with color (R,G,B)} \)

Color Normalization

- One component of the 3D color space is intensity
 - If a color vector is multiplied by a scalar, the intensity changes, but not the color itself.
 - This means colors can be normalized by the intensity.
 - Intensity is given by \(I = R + G + B \):
 - "Chromatic representation"
 - \(r = \frac{R}{R + G + B} \)
 - \(g = \frac{G}{R + G + B} \)
 - \(b = \frac{B}{R + G + B} \)
Color Normalization

- Observation:
 - Since \(r + g + b = 1 \), only 2 parameters are necessary
 - E.g., one can use \(r \) and \(g \)
 - and obtains \(b = 1 - r - g \)

Color Histograms

- Robust representation

Topics of This Lecture

- **Object Recognition**
 - Appearance-based recognition
 - Color histograms

- **Recognition using histograms**
 - Histogram comparison measures
 - Histogram backprojection
 - Multidimensional histograms

- **Probabilistic Interpretation**
 - Probability density estimation
 - Recognition from local samples
 - Extension: recognition of multiple objects in an image
 - Extension: colored derivatives

Recognition Using Histograms

- Histogram comparison

- With multiple training views
What Is a Good Comparison Measure?

• How to define matching cost?

Comparison Measures: Kullback-Leibler

– B. Leibe

Comparison Measures: Mahalanobis Distance

– B. Leibe

Comparison Measures: Chi-Square

– B. Leibe

Comparison Measures: Bhattacharyya Distance

– B. Leibe

Comparison Measures: Kullback-Leibler

– B. Leibe
Comp. Measures: Histogram Intersection

- **Definition**
 - Intersection
 \[\cap(Q, V) = \sum_i \min(q_i, v_i) \]

- **Motivation**
 - Measures the common part of both histograms
 - Range: [0, 1]
 - For unnormalized histograms, use the following formula
 \[\cap(Q, V) = \frac{1}{2} \left(\frac{\sum_i \min(q_i, v_i)}{\sum_i q_i} + \frac{\sum_i \min(q_i, v_i)}{\sum_i v_i} \right) \]

Comp. Measures: Earth Movers Distance

- **Motivation:** Moving Earth

\[\text{(distance moved) \times (amount moved)} \]

\[\sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} \times (\text{amount moved}) \]

- **Linear Programming Problem**

\[Q \]

\[V \]

\[m \text{ clusters} \]

\[n \text{ clusters} \]

\[\text{All movements} \]
Comp. Measures: Earth Movers Distance

- **Motivation: Moving Earth**
 - Linear Programming Problem

\[\sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} f_{ij} = \text{WORK} \]

- **Constraints**
 1. Move "earth" only from Q to V
 2. Cannot send more "earth" than there is
 3. V cannot receive more than it can hold
 4. As much "earth" as possible must be moved.
 - Either Q must be completely spent or V must be completely filled.

\[\sum_{j=1}^{n} f_{ij} \leq w_{qj} \]

\[\sum_{i=1}^{m} f_{ij} \leq w_{vj} \]

EMD Computation

- **Motivation: Moving Earth**
 - Linear Programming Problem
 - Distance measure
 \[D_{EMD} (Q, V) = \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} f_{ij} \]

\[\sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} f_{ij} = \text{WORK} \]

- **Advantages**
 - Nearness measure without quantization
 - Partial matching
 - A true metric
 - Disadvantage: expensive computation
 - Efficient algorithms available for 1D
 - Approximations for higher dimensions...
Summary: Comparison Measures

- Vector space interpretation
 - Euclidean distance
 - Mahalanobis distance
- Statistical motivation
 - Chi-square
 - Bhattacharyya
- Information-theoretic motivation
 - Kullback-Leibler divergence, Jeffreys divergence
- Histogram motivation
 - Histogram intersection
- Ground distance
 - Earth Movers Distance (EMD)

Comparison for Image Retrieval

- L2 distance
- Jeffrey divergence
- \(\chi^2 \) statistics
- Earth Movers Distance

Histogram Comparison

- Which measure is best?
 - Depends on the application...
 - Euclidean distance is often not robust enough.
 - Both Intersection and \(\chi^2 \) give good performance for histograms.
 - \(\chi^2 \) is a bit more discriminative.
 - Kullback-Leibler works sometimes very well, but is expensive.
 - EMD is most powerful, but also quite expensive
 - There exist many other measures not mentioned here
 - e.g. statistical tests: Kolmogorov-Smirnov, Cramer/Von-Mises

Summary: Recognition Using Histograms

- Simple algorithm
 1. Build a set of histograms \(H = \{ h_i \} \) for each known object
 2. Build a histogram \(h_t \) for the test image.
 3. Compare \(h_t \) to each \(h_i \in H \)
 4. Select the object with the best matching score
 - Or reject the test image if no object is similar enough.

"Nearest-Neighbor" strategy

Topics of This Lecture

- Object Recognition
 - Appearance-based recognition
 - Global representations
 - Color histograms
- Recognition using histograms
 - Histogram comparison measures
 - Histogram backprojection
 - Multidimensional histograms
- Probabilistic interpretation
 - Probability density estimation
 - Recognition from local samples
 - Extension: recognition of multiple objects in an image
 - Extension: colored derivatives

Localization by Histogram Backprojection

- "Where in the image are the colors we're looking for?"
 - Idea: Normalized histogram represents probability distribution
 \[p(x|\text{obj}) \]
 - Histogram backprojection
 - For each pixel \(x \), compute the likelihood that this pixel color was caused by the object: \(p(x|\text{obj}) \).
 - This value is projected back into the image (i.e. the image values are replaced by the corresponding histogram values).
Color-Based Skin Detection

• Used 18,696 images to build a general color model.
• Histogram representation

M. Jones and J. Rehg, Statistical Color Models with Application to Skin Detection, IJCV 2002.

Localization by Histogram Backprojection

• "Where in the image are the colors we’re looking for?"
 • Query: object with histogram \(M \)
 • Given: image with histogram \(I \)

• Compute the "ratio histogram":
 \[
 R_i = \min \left(\frac{M_i}{I_{\max}}, 1 \right)
 \]

 - \(R \) reveals how important an object color is, relative to the current image.
 - Color is frequent on the object \(\Rightarrow \) large \(M_i \)
 - Color is frequent in the image \(\Rightarrow \) large \(I \)

 - This value is projected back into the image \(\Rightarrow \) the image values are replaced by the values of \(R \) that they index.
 - The result image is convolved with a circular mask the size of the target object.
 - Peaks in the convolved image indicate detected objects.

Object Localization Results

• Example result after backprojection
 • Looking for blue pullover...

Discussion: Color Histograms

• Pros
 - Invariant to object translation & rotation
 - Slowly changing for out-of-plane rotation
 - No perfect segmentation necessary
 - Histograms change gradually when part of the object is occluded
 - Possible to recognize deformable objects
 - e.g. pullover

• Cons
 - Pixel colors change with the illumination ("color constancy problem")
 - Intensity
 - Spectral composition (illumination color)
 - Not all objects can be identified by their color distribution.

Topics of This Lecture

• Object Recognition
 - Appearance-based recognition
 - Global representations
 - Color histograms

• Recognition using histograms
 - Histogram comparison measures
 - Histogram backprojection
 - Multidimensional histograms

• Probabilistic Interpretation
 - Probability density estimation
 - Recognition from local samples
 - Extension: recognition of multiple objects in an image
 - Extension: colored derivatives

Generalization of the Idea

• Histograms of derivatives
 - \(\mathbf{D}_x \)
 - \(\mathbf{D}_y \)
 - \(\mathbf{D}_{xx} \)
 - \(\mathbf{D}_{xy} \)
 - \(\mathbf{D}_{yy} \)
General Filter Response Histograms

- Any local descriptor (e.g., filter, filter combination) can be used to build a histogram.

- **Examples:**
 - Gradient magnitude: \(\text{Mag} = \sqrt{D_x^2 + D_y^2} \)
 - Gradient direction: \(\text{Dir} = \arctan \frac{D_y}{D_x} \)
 - Laplacian: \(\text{Lap} = D_{xx} + D_{yy} \)

Multidimensional Representations

- Combination of several descriptors
 - Each descriptor is applied to the whole image.
 - Corresponding pixel values are combined into one feature vector.
 - Feature vectors are collected in multidimensional histogram.

Multidimensional Histograms

- **Examples**

 ![Feature vector collection](image)

Generalization: Filter Banks

- What filters to put in the bank?
 - Typically we want a combination of scales and orientations, different types of patterns.

 Matlab code available for these examples: http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

Example Application of a Filter Bank

- **Filter bank of 8 filters**
 - 8 response images: magnitude of filtered outputs, per filter
Recall: These looked very similar in terms of their color distributions (when our features were R-G-B).

But how would their texture distributions compare?

Special Case: Multiscale Representations

- Combination of several scales
 - Descriptors are computed at different scales.
 - Each scale captures different information about the object.
 - Size of the support region grows with increasing σ.
 - Feature vectors capture both local details and larger-scale structures.

Summary: Multidimensional Representations

- **Pros**
 - Work very well for recognition.
 - Usually, simple combinations are sufficient (e.g. D_x, D_y, Mag-Lap).
 - But multiple scales are very important!
 - Generalization: filter banks

- **Cons**
 - High-dimensional histograms \Rightarrow lots of storage space
 - Global representation \Rightarrow not robust to occlusion

Topics of This Lecture

- **Object Recognition**
 - Appearance-based recognition
 - Global representations
 - Color histograms
 - Recognition using histograms
 - Histogram comparison methods
 - Histogram backprojection
 - Multidimensional histograms

- **Probabilistic Interpretation**
 - Probability density estimation
 - Recognition from local samples
 - Extension: recognition of multiple objects in an image
 - Extension: colored derivatives

From Global To Local...

- Up to now, we have compared entire histograms.

 \Rightarrow Problematic if objects can be partially occluded.

- Now:
 - Look at local measurements only.
 - What can we tell if we only see a single pixel of the object?

Recall: Working with Probabilities

- **Random Variables**:
 - A, B

- **Probabilities**:
 - $\Pr(A), \Pr(B)$

- **Joint probability**
 - $\Pr(A, B)$

- **Conditional probability**
 - $\Pr(A \mid B)$
Recall: Manipulation Rules

- Factorization of the joint
 \[\Pr(A, B) = \Pr(A | B) \Pr(B) = \Pr(B | A) \Pr(A) \]

- Marginalization
 \[\Pr(A) = \sum_i \Pr(A, b_i) = \sum_i \Pr(A | b_i) \Pr(b_i) \]
 \[= \sum_i \Pr(b_i | A) \Pr(A) \]

- Bayes theorem
 \[\Pr(A | B) = \frac{\Pr(B | A) \Pr(A)}{\Pr(B)} \]

Probabilistic Derivation

- Probability of object \(o_n \) given measurement \(m_k \)
 \[p(o_n | m_k) = \frac{p(m_k | o_n) p(o_n)}{p(m_k)} \]

- Recall: Bayes theorem
 \[\Pr(A | B) = \frac{\Pr(B | A) \Pr(A)}{\Pr(B)} \]

Probabilistic Recognition

- Assumption: all objects equally probable (“naïve Bayes”)
 \[p(o_i) = \frac{1}{N} \]
 \[p(o_n | m_k) = \frac{p(m_k | o_n) p(o_n)}{\sum_i p(m_k | o_i) p(o_i)} \]
 \[\text{value of hist. cell} \]
 \[\text{sum over all objects} \]

- Joint probability for two measurements
 \[p(o_n | m_k \land m_j) = \frac{p(m_k \land m_j | o_n) p(o_n)}{\sum_i p(m_k \land m_j | o_i) p(o_i)} \]
 \[\text{Assumption: } m_k \text{ and } m_j \text{ are independent} \]
 \[\text{The individual probabilities can be multiplied} \]
 \[p(o_n | m_k \land m_j) = \frac{p(m_k | o_n) p(m_j | o_n) p(o_n)}{\sum_i p(m_k | o_i) p(m_j | o_i) p(o_i)} \]
Probabilistic Recognition

- Joint probability for K independent measurements
 \[
 p(o_n | m_k) = \frac{\prod_k p(m_k | o_n) p(o_n)}{\sum_k \prod_k p(m_k | o_n) p(o_n)}
 \]

- Assumption: all objects are equally probable
 \[
 p(o_i) = \frac{1}{N}
 \]

 \[
 p(o_n | m_k) = \frac{\prod_k p(m_k | o_n) p(o_n)}{\sum_k \prod_k p(m_k | o_n) p(o_n)}
 \]

Bayesian Recognition Algorithm

1. Build up histograms $p(m_k | o_n)$ for each training object.
2. Sample the test image to obtain $m_k, k \in K$.
 - Only small number of local samples necessary.
3. Compute the probabilities for each training object.
 \[
 p(o_n | \text{Image}) = \frac{\prod_k p(m_k | o_n) p(o_n)}{\sum_k \prod_k p(m_k | o_n) p(o_n)}
 \]
4. Select the object with the highest probability
 - Or reject the test image if no object accumulates sufficient probability.

Practical Issues

- Most expensive step
 3. Compute the probabilities for each training object.

 \[
 p(o_n | \text{Image}) = \frac{\prod_k p(m_k | o_n) p(o_n)}{\sum_k \prod_k p(m_k | o_n) p(o_n)}
 \]

- Notes
 - The numerator computes a score indicating how probable each object o_i in the database is.
 - This score can be used to compare the different object hypotheses.
 - The denominator is the same for all objects in the database.
 - This term is important in order to decide if we have accumulated sufficient evidence to make a decision.

Results: Probabilistic (Bayesian) Recognition

- Test database
 - 103 test objects
 - 1327 test images total
 - 607 images with scale changes and rotations for 83 objects
 - 720 images with different viewpoints for 20 objects
 - Use 6D descriptor
 - D_x with $\sigma = \{1,2,4\}$
 - Explicitly trained for scale changes & rotations

- Example image from test database
Experimental Evaluation

- Recognition under Partial Occlusion
 - Compare intersection, χ^2, and probabilistic recognition

- Results
 - Intersection more robust to occlusion than χ^2
 - Probabilistic recognition most robust
 - 62% visibility \Rightarrow 100% recognition
 - 33% visibility \Rightarrow 99% recognition
 - 13% visibility \Rightarrow >90% recognition

Topics of This Lecture

- Object Recognition
 - Appearance-based recognition
 - Global representation
 - Color histograms
 - Recognition using histograms
 - Histogram comparison measure
 - Histogram backprojection
 - Multi-dimensional histograms

- Probabilistic Interpretation
 - Probability density estimation
 - Recognition from local samples
 - Extension: recognition of multiple objects in an image
 - Extension: colored derivatives

Extension: Recognition of Multiple Objects

- Comparison with Hash table
 - m_i, m_j vote ($o_n(m_i)$, $o_n(m_j)$)
 - o_n(n) = \sum $o_n(m_i)$

- Probabilistic Recognition
 - m_i, m_j vote ($p(o_n(m_i))$, $p(o_n(m_j))$
 - $p(o_n)$(n) = \prod $\frac{p(o_n(m_i))p(o_n(m_j))}{\sum_{m_i,m_j} p(m_i,m_j)p(o_n(m_i))}$

Recognition of Multiple Objects

- Local Appearance Hashing
 - Combination of the probabilistic recognition with a hash table
 - Only relatively small object region is needed for recognition.
 - Divide image into set of (overlapping) regions.
 - Each region votes for a single object.
 - Region votes are combined to vote for the presence of object n.

Recognition Results

- Test image 1
 - First Match
 - Second Match
 - Third Match

- Test image 2
 - First Match
 - Second Match
 - Third Match
Why Does It Work?

- Histogram Representation
 - Contains no structural description.
 - Many different objects should result in the same histograms.
 ⇒ Why can the approach still distinguish so many objects?

- Explanation
 - Support regions of neighboring descriptors overlap.
 - Neighborhood relations are captured implicitly.

Topics of This Lecture

- Object Recognition
 - Appearance-based recognition
 - Global representations
 - Color histograms

- Recognition using histograms
 - Histogram comparison measures
 - Histogram backprojection
 - Multidimensional histograms

- Probabilistic Interpretation
 - Probability density estimation
 - Recognition from local samples
 - Extension: recognition of multiple objects in an image
 - Extension: colored derivatives

Extension: Colored Derivatives

- YC1C2 color space

- Color-opponent space
 - Inspired by models of the human visual system
 - Y \equiv intensity
 - C1 \equiv red-green
 - C2 \equiv blue-yellow

Application: Brand Identification in Video

Extension: Colored Derivatives

- Generalization: derivatives along
 - Y axis \rightarrow intensity differences
 - C1 axis \rightarrow red-green differences
 - C2 axis \rightarrow blue-yellow differences

- Feature vector is rotated such that \(D_y = 0 \)
 - Rotation-invariant descriptor
Application: Brand Identification in Video

B. Leibe
Perceptual and Sensory Augmented Computing
Computer Vision WS 09/10

Summary

- Appearance-based Object Recognition
 - Using global representations
- Histograms
 - Color histograms
 - Histogram comparison measures
 - Multidimensional histograms
- Probabilistic Recognition
 - Histograms as probability density estimates
 - Recognition from local measurements
 - Recognition of multiple objects in an image

You’re Now Ready for First Applications...

- All the basic components are there
 - Binary processing
 - Filter operators
 - Edges, lines, circles
 - Color
 - Simple global recognition
- So, let’s have some fun!

References and Further Reading

- Background information on histogram-based object recognition can be found in the following paper
- Matlab filterbank code available at
 - http://www.robots.ox.ac.uk/~vgg/research/tesclass/filters.html