Recap: Appearance-Based Recognition

- Basic assumption
 - Objects can be represented by a set of images ("appearances").
 - For recognition, it is sufficient to just compare the 2D appearances.
 - No 3D model is needed.

⇒ Fundamental paradigm shift in the 90’s

Recap: Recognition Using Histograms

- Simple algorithm
 1. Build a set of histograms \(H = \{ h_i \} \) for each known object
 2. Build a histogram \(h_t \) for the test image.
 3. Compare \(h_t \) to each \(h_i \in H \)
 4. Select the object with the best matching score

“Nearest-Neighbor” strategy
Recap: Histogram Backprojection

- "Where in the image are the colors we’re looking for?"
 - Query: object with histogram I_j
 - Given: image with histogram I_i
- Compute the "ratio histogram": $R_i = \min \left(\frac{M_{ij}}{I_i}, 1 \right)$
 - R reveals how important an object color is, relative to the current image.
 - Project value back into the image (i.e., replace the image values by the values of R that they index).
 - Convolve result image with a circular mask to find the object.

Recap: Bayesian Recognition Algorithm

1. Build up histograms $p(m_j | o_k)$ for each training object.
2. Sample the test image to obtain m_t, $k \in K$.
 - Only small number of local samples necessary.
3. Compute the probabilities for each training object.
 - $p(n_i | m_j) = \prod_j p(n_i | m_j)$
 - $p(n_i | m) = \prod_j p(n_i | m_j)$
 - $p(n_i | m) = \prod_j p(n_i | m_j) p(o_k | m_j)$
4. Select the object with the highest probability
 - Or reject the test image if no object accumulates sufficient probability.

Recap: Multidimensional Representations

- Combination of several descriptors
 - Each descriptor is applied to the whole image.
 - Corresponding pixel values are combined into one feature vector.
 - Feature vectors are collected in multidimensional histogram.

Recap: Colored Derivatives

- Generalization: derivatives along Y axis \rightarrow intensity differences
 - C_1 axis \rightarrow red-green differences
 - C_2 axis \rightarrow blue-yellow differences
- Application:
 - Brand identification in video

Demo Competition

- Design your own Computer Vision demo!
 - Based on the techniques from the lecture...
 - Topic is up to you – it should be fun!
 - Teams of up to 3 students
 - Demo day after the end of the semester
 - Will send around a poll for a suitable date...
 - Participation is optional (but it will be fun!)
 - Demos will count for up to 30 extra exercise points
 - (Small) prizes for best teams

If you have questions, we’ll be happy to give advice...
Topics of This Lecture

- Segmentation and grouping
 - Gestalt principles
 - Image segmentation
- Segmentation as clustering
 - k-Means
 - Feature spaces
- Probabilistic clustering
 - Mixture of Gaussians, EM
- Model-free clustering
 - Mean-Shift clustering
- Graph theoretic segmentation
 - Normalized Cuts

Examples of Grouping in Vision

- Determining image regions
- What things should be grouped?
- What cues indicate groups?
- Object-level grouping
- Figure-ground

Similarity

Symmetry

Common Fate

Proximity
Perceptual and Sensory Augmented Computing
Computer Vision WS 08/09

Muller-Lyer Illusion

- Gestalt principle: grouping is key to visual perception.

The Gestalt School

- Grouping is key to visual perception
- Elements in a collection can have properties that result from relationships
 - “The whole is greater than the sum of its parts”

Gestalt Theory

- Gestalt: whole or group
 - Whole is greater than sum of its parts
 - Relationships among parts can yield new properties/features
- Psychologists identified series of factors that predispose set of elements to be grouped (by human visual system)

“I stand at the window and see a house, trees, sky. Theoretically I might say there were 327 brightnesses and nuances of colour. Do I have 327? No. I have sky, house, and trees.”

Max Wertheimer
(1880-1943)

Untersuchungen zur Lehre von der Gestalt,
Psychologische Forschung, Vol. 4, pp. 301-350, 1923
http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm

Gestalt Factors

- These factors make intuitive sense, but are very difficult to translate into algorithms.

Continuity through Occlusion Cues

Continuity, explanation by occlusion
Continuity through Occlusion Cues

Figure-Ground Discrimination

Image Segmentation
- Goal: identify groups of pixels that go together

The Goals of Segmentation
- Separate image into coherent “objects”
The Goals of Segmentation

- Separate image into coherent “objects”
- Group together similar-looking pixels for efficiency of further processing

Image Segmentation: Toy Example

- These intensities define the three groups.
- We could label every pixel in the image according to which of these primary intensities it is.
 - i.e., segment the image based on the intensity feature.
- What if the image isn’t quite so simple?

Topics of This Lecture

- Segmentation and grouping
 - Gestalt principles
 - Image Segmentation
- Segmentation as clustering
 - k-Means
 - Feature spaces
 - Probabilistic clustering
 - Mixture of Gaussians, EM
 - Model-free clustering
 - Mean-Shift clustering
- Graph theoretic segmentation
 - Normalized Cuts

Now how to determine the three main intensities that define our groups?
We need to cluster.
Clustering

• With this objective, it is a “chicken and egg” problem:
 - If we knew the cluster centers, we could allocate points to groups by assigning each to its closest center.
 - If we knew the group memberships, we could get the centers by computing the mean per group.

K-Means Clustering

• Basic idea: randomly initialize the k cluster centers, and iterate between the two steps we just saw.
 1. Randomly initialize the cluster centers, \(c_1, \ldots, c_k \).
 2. Given cluster centers, determine points in each cluster
 - For each point \(p \), find the closest \(c_i \). Put \(p \) into cluster \(i \).
 3. Given points in each cluster, solve for \(c_i \)
 - Set \(c_i \) to be the mean of points in cluster \(i \).
 4. If \(c_i \) have changed, repeat Step 2.

Properties

- Will always converge to some solution
- Can be a “local minimum”
- Does not always find the global minimum of objective function:
 \[\sum_{i} \sum_{p \text{ in } \text{cluster } i} ||p - c_i||^2 \]

Segmentation as Clustering

K-Means Clustering

• Java demo:
 http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

K-Means++

• Can we prevent arbitrarily bad local minima?
 1. Randomly choose first center.
 2. Pick new center with prob. proportional to \(||p - c_i||^2 \)
 - (Contribution of \(p \) to total error)
 3. Repeat until \(k \) centers.
 - Expected error = \(O(\log k) \) * optimal

Feature Space

• Depending on what we choose as the feature space, we can group pixels in different ways.
• Grouping pixels based on intensity similarity

Feature space: intensity value (1D)
Feature Space
- Depending on what we choose as the feature space, we can group pixels in different ways.
- Grouping pixels based on color similarity
- Feature space: color value (3D)

Segmentation as Clustering
- Depending on what we choose as the feature space, we can group pixels in different ways.
- Grouping pixels based on texture similarity
- Feature space: filter bank responses (e.g., 24D)

Smoothing Out Cluster Assignments
- Assigning a cluster label per pixel may yield outliers:
- How can we ensure they are spatially smooth?

K-Means Clustering Results
- K-means clustering based on intensity or color is essentially vector quantization of the image attributes
 - Clusters don’t have to be spatially coherent
- Clustering based on (r,g,b,x,y) values enforces more spatial coherence
Summary K-Means

- **Pros**
 - Simple, fast to compute
 - Converges to local minimum of within-cluster squared error

- **Cons/Issues**
 - Setting k?
 - Sensitive to initial centers
 - Sensitive to outliers
 - Detects spherical clusters only
 - Assuming means can be computed

Topics of This Lecture

- Segmentation and grouping
 - Gestalt principles
 - Image Segmentation

- Segmentation as clustering
 - k-Means
 - Feature spaces

- Probabilistic clustering
 - Mixture of Gaussians, EM

- Model-free clustering
 - Mean-Shift clustering

- Graph theoretic segmentation
 - Normalized Cuts

Probabilistic Clustering

- **Basic questions**
 - What’s the probability that a point x is in cluster m?
 - What’s the shape of each cluster?
- K-means doesn’t answer these questions.

- **Basic idea**
 - Instead of treating the data as a bunch of points, assume that they are all generated by sampling a continuous function.
 - This function is called a **generative model**.
 - Defined by a vector of parameters θ

Mixture of Gaussians

- One generative model is a mixture of Gaussians (MoG)
 - K Gaussian blobs with means μ_b, covariance matrices V_b, dimension d
 - Blob b defined by:
 - $P(x|\mu_b, V_b)$
 - Blob b is selected with probability π_b
 - The likelihood of observing x is a weighted mixture of Gaussians
 $P(x|\theta) = \sum_{b=1}^{K} \pi_b P(x|\theta_b), \quad \theta = [\pi_1, \ldots, \pi_K, \mu_1, \ldots, \mu_K]$

Expectation Maximization (EM)

- **Goal**
 - Find blob parameters θ that maximize the likelihood function:
 $P(\text{data}|\theta) = \prod_x P(x|\theta)$
- **Approach:**
 1. **E-step:** given current guess of blobs, compute ownership of each point
 2. **M-step:** given ownership probabilities, update blobs to maximize likelihood function
 3. Repeat until convergence

EM Details

- **E-step**
 - Compute probability that point x is in blob b, given current guess of θ
 $P(b|x, \mu_b, V_b) = \frac{\pi_b P(x|\mu_b, V_b)}{\sum_{b=1}^{K} \pi_b P(x|\mu_b, V_b)}$
- **M-step**
 - Compute probability that blob b is selected
 $\pi_b \text{new} = \frac{1}{N} \sum_{b=1}^{K} P(b|x, \mu_b, V_b)$ (v data points)
 - Mean of blob b
 $\mu_b \text{new} = \frac{\sum_{b=1}^{K} \sum_{i} x_i P(b|x, \mu_b, V_b)}{\sum_{b=1}^{K} \sum_{i} P(b|x, \mu_b, V_b)}$
 - Covariance of blob b
 $V_b \text{new} = \frac{\sum_{b=1}^{K} \sum_{i} (x_i - \mu_b \text{new})(x_i - \mu_b \text{new})^T P(b|x, \mu_b, V_b)}{\sum_{b=1}^{K} \sum_{i} P(b|x, \mu_b, V_b)}$
Applications of EM

- Turns out this is useful for all sorts of problems
 - Any clustering problem
 - Any model estimation problem
 - Missing data problems
 - Finding outliers
 - Segmentation problems
 - Segmentation based on color
 - Segmentation based on motion
 - Foreground/background separation
 - ...

- EM demo

Summary: Mixtures of Gaussians, EM

- Pros
 - Probabilistic interpretation
 - Soft assignments between data points and clusters
 - Generative model, can predict novel data points
 - Relatively compact storage

- Cons
 - Local minima
 - k-means is NP-hard even with k=2
 - Initialization
 - Often a good idea to start with some k-means iterations.
 - Need to choose generative model
 - Numerical problems are often a nuisance

Topics of This Lecture

- Segmentation and grouping
 - Gestalt principles

- Image segmentation

- Segmentation as clustering
 - k-means

- Feature spaces

- Probabilistic clustering
 - Mixture of Gaussians, EM

- Model-free clustering
 - Mean-Shift clustering

- Graph theoretic segmentation
 - Normalized Cuts

Finding Modes in a Histogram

- How many modes are there?
 - Mode = local maximum of the density of a given distribution
 - Easy to see, hard to compute

Mean-Shift Segmentation

- An advanced and versatile technique for clustering-based segmentation

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Slide credit: Steve Seitz

B. Leibe
Mean-Shift Algorithm

1. Initialize random seed, and window W
2. Calculate center of gravity (the "mean") of W: \(\sum_{x \in W} x \cdot \rho(x) \)
3. Shift the search window to the mean
4. Repeat Step 2 until convergence

Slide credit: Steve Seitz & B. Sarel
Mean-Shift

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode

Real Modality Analysis

- Tessellate the space with windows
- Run the procedure in parallel
- Slide by Y. Ukrainitz & B. Sarel

Mean-Shift Clustering/Segmentation

- Find features (color, gradients, texture, etc)
- Initialize windows at individual pixel locations
- Perform mean shift for each window until convergence
- Merge windows that end up near the same “peak” or mode

Slide credit: Svetlana Lazebnik

The blue data points were traversed by the windows towards the mode.
Mean-Shift Segmentation Results

http://www.caip.rutgers.edu/~comanicii/MSPAMI/msPamiResults.html

More Results

Problem: Computational Complexity

• Need to shift many windows.
• Many computations will be redundant.

Speedups: Basin of Attraction

1. Assign all points within radius r of end point to the mode.

Speedups

2. Assign all points within radius r/c of the search path to the mode.
Summary Mean-Shift

- **Pros**
 - General, application-independent tool
 - Model-free, does not assume any prior shape (spherical, elliptical, etc.) on data clusters
 - Just a single parameter (window size h)
 - h has a physical meaning (unlike k-means)
 - Finds variable number of modes
 - Robust to outliers

- **Cons**
 - Output depends on window size
 - Window size (bandwidth) selection is not trivial
 - Computationally (relatively) expensive (~2s/image)
 - Does not scale well with dimension of feature space

Segmentation: Caveats

- We’ve looked at bottom-up ways to segment an image into regions, yet finding meaningful segments is intertwined with the recognition problem.
- Often want to avoid making hard decisions too soon
- Difficult to evaluate; when is a segmentation successful?

Generic Clustering

- We have focused on ways to group pixels into image segments based on their appearance
 - Find groups; “quantize” feature space
- In general, we can use clustering techniques to find groups of similar “tokens”, provided we know how to compare the tokens.
 - E.g., segment an image into the types of motions present
 - E.g., segment a video into the types of scenes (shots) present

References and Further Reading

- Background information on segmentation by clustering and on Normalized Cuts can be found in Chapter 14 of
- More on the EM algorithm can be found in Chapter 16.1.2.
- Read Max Wertheimer’s classic thoughts on Gestalt
 - http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm
- Try the k-means and EM demos at
 - http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html