Computer Vision - Lecture 7

Segmentation and Grouping

19.11.2009

Bastian Leibe
RWTH Aachen
http://www.umic.rwth-aachen.de/multimedia
leibe@umic.rwth-aachen.de
Course Outline

- Image Processing Basics
- Recognition I
 - Global Representations
- Segmentation
 - Segmentation and Grouping
 - Graph-theoretic Segmentation
- Recognition II
 - Subspace representations
- Local Features & Matching
- Object Categorization
- 3D Reconstruction
- Motion and Tracking
Recap: Appearance-Based Recognition

- Basic assumption
 - Objects can be represented by a set of images ("appearances").
 - For recognition, it is sufficient to just compare the 2D appearances.
 - No 3D model is needed.

\Rightarrow Fundamental paradigm shift in the 90’s

B. Leibe
Recap: Recognition Using Histograms

- Histogram comparison

Test image

Known objects
Recap: Comparison Measures

- Vector space interpretation
 - Euclidean distance
 - Mahalanobis distance

- Statistical motivation
 - Chi-square
 - Bhattacharyya

- Information-theoretic motivation
 - Kullback-Leibler divergence, Jeffreys divergence

- Histogram motivation
 - Histogram intersection

- Ground distance
 - Earth Movers Distance (EMD)
Recap: Recognition Using Histograms

- Simple algorithm
 1. Build a set of histograms $H=\{h_i\}$ for each known object
 - More exactly, for each view of each object
 2. Build a histogram h_t for the test image.
 3. Compare h_t to each $h_i \in H$
 - Using a suitable comparison measure
 4. Select the object with the best matching score
 - Or reject the test image if no object is similar enough.

“Nearest-Neighbor” strategy
Recap: Histogram Backprojection

- „Where in the image are the colors we’re looking for?“
 - Query: object with histogram M
 - Given: image with histogram I

- Compute the „ratio histogram“:
 \[R_i = \min \left(\frac{M_i}{I_i}, 1 \right) \]
 - R reveals how important an object color is, relative to the current image.
 - Project value back into the image (i.e. replace the image values by the values of R that they index).
 - Convolve result image with a circular mask to find the object.
Recap: Multidimensional Representations

- Combination of several descriptors
 - Each descriptor is applied to the whole image.
 - Corresponding pixel values are combined into one feature vector.
 - Feature vectors are collected in multidimensional histogram.
Recap: Bayesian Recognition Algorithm

1. Build up histograms $p(m_k|o_n)$ for each training object.

2. Sample the test image to obtain $m_k, k \in K$.
 - Only small number of local samples necessary.

3. Compute the probabilities for each training object.

 $\begin{align*}
 p(o_n|m_i) \\
 p(o_n|m_j) \\
 \vdots
 \end{align*}$

 $$p(o_n|Image) = \frac{\prod_k p(m_k|o_n)p(o_n)}{\sum_i \prod_k p(m_k|o_i)p(o_i)}$$

4. Select the object with the highest probability
 - Or reject the test image if no object accumulates sufficient probability.
Recap: Colored Derivatives

- Generalization: derivatives along
 - Y axis → intensity differences
 - C₁ axis → red-green differences
 - C₂ axis → blue-yellow differences

- Application:
 - Brand identification in video

[Hall & Crowley, 2000]
You’re Now Ready for First Applications...

- Line detection
- Histogram based recognition
- Circle detection
- Binary Segmentation
- Skin color detection
- Moment descriptors

Image Source: http://www.flickr.com/photos/angelsk/2806412807/
Demo Competition

- Design your own Computer Vision demo!
 - Based on the techniques from the lecture...
 - Topic is up to you - it should be fun!
 - Teams of up to 3 students
 - Demo day after the end of the semester
 - Will send around a poll for a suitable date...
 - Participation is optional (but it will be fun!)
 - Demos will count for up to 30 extra exercise points
 - (Small) prizes for best teams

If you have questions, we’ll be happy to give advice...
Topics of This Lecture

• Segmentation and grouping
 - Gestalt principles
 - Image segmentation

• Segmentation as clustering
 - k-Means
 - Feature spaces

• Probabilistic clustering
 - Mixture of Gaussians, EM

• Model-free clustering
 - Mean-Shift clustering

• Graph theoretic segmentation
 - Normalized Cuts
Examples of Grouping in Vision

Determining image regions

What things should be grouped?

What cues indicate groups?

Grouping video frames into shots

Object-level grouping

Slide credit: Kristen Grauman

B. Leibe
Similarity
Symmetry

Slide credit: Kristen Grauman

B. Leibe
Common Fate

Image credit: Arthus-Bertrand (via F. Durand)

Slide credit: Kristen Grauman
Proximity

Slide credit: Kristen Grauman
http://www.capital.edu/Resources/Images/outside6_035.jpg

B. Leibe
Muller-Lyer Illusion

- Gestalt principle: grouping is key to visual perception.
The Gestalt School

- Grouping is key to visual perception
- Elements in a collection can have properties that result from relationships
 - “The whole is greater than the sum of its parts”

Illusory/subjective contours

http://en.wikipedia.org/wiki/Gestalt_psychology

Slide credit: Svetlana Lazebnik

Image source: Steve Lehar
Gestalt Theory

• Gestalt: whole or group
 - Whole is greater than sum of its parts
 - Relationships among parts can yield new properties/features

• Psychologists identified series of factors that predispose set of elements to be grouped (by human visual system)

“I stand at the window and see a house, trees, sky. Theoretically I might say there were 327 brightnesses and nuances of colour. Do I have "327"? No. I have sky, house, and trees.”

Max Wertheimer
(1880-1943)

Untersuchungen zur Lehre von der Gestalt, Psychologische Forschung, Vol. 4, pp. 301-350, 1923
http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm

B. Leibe
Gestalt Factors

- Not grouped
- Proximity
- Similarity
- Similarity
- Common Fate
- Common Region

- These factors make intuitive sense, but are very difficult to translate into algorithms.

B. Leibe

Image source: Forsyth & Ponce
Continuity through Occlusion Cues
Continuity through Occlusion Cues

Continuity, explanation by occlusion

B. Leibe
Continuity through Occlusion Cues
Continuity through Occlusion Cues
Figure-Ground Discrimination
The Ultimate Gestalt?
Image Segmentation

- Goal: identify groups of pixels that go together
The Goals of Segmentation

- Separate image into coherent “objects”
The Goals of Segmentation

- Separate image into coherent “objects”
- Group together similar-looking pixels for efficiency of further processing

“superpixels”

Topics of This Lecture

- Segmentation and grouping
 - Gestalt principles
 - Image Segmentation

- Segmentation as clustering
 - k-Means
 - Feature spaces

- Probabilistic clustering
 - Mixture of Gaussians, EM

- Model-free clustering
 - Mean-Shift clustering

- Graph theoretic segmentation
 - Normalized Cuts

B. Leibe
These intensities define the three groups.

We could label every pixel in the image according to which of these primary intensities it is.

• i.e., segment the image based on the intensity feature.

What if the image isn’t quite so simple?
Input image

Intensity

Pixel count

Input image

Intensity

Pixel count

Slide credit: Kristen Grauman

B. Leibe
- Now how to determine the three main intensities that define our groups?
- We need to cluster.
• Goal: choose three “centers” as the representative intensities, and label every pixel according to which of these centers it is nearest to.

• Best cluster centers are those that minimize SSD between all points and their nearest cluster center c_i:

$$\sum_{\text{clusters } i} \sum_{\text{points } p \text{ in cluster } i} \|p - c_i\|^2$$
Clustering

- With this objective, it is a “chicken and egg” problem:
 - If we knew the *cluster centers*, we could allocate points to groups by assigning each to its closest center.
 - If we knew the *group memberships*, we could get the centers by computing the mean per group.
K-Means Clustering

- Basic idea: randomly initialize the k cluster centers, and iterate between the two steps we just saw.
 1. Randomly initialize the cluster centers, c_1, \ldots, c_k
 2. Given cluster centers, determine points in each cluster
 - For each point p, find the closest c_i. Put p into cluster i
 3. Given points in each cluster, solve for c_i
 - Set c_i to be the mean of points in cluster i
 4. If c_i have changed, repeat Step 2

- Properties
 - Will always converge to some solution
 - Can be a “local minimum”
 - Does not always find the global minimum of objective function:
 $$\sum_{\text{clusters } i} \sum_{\text{points } p \text{ in cluster } i} \|p - c_i\|^2$$
Segmentation as Clustering

```matlab
img_as_col = double(im(:));
cluster_membs = kmeans(img_as_col, K);

labelim = zeros(size(im));
for i=1:k
    inds = find(cluster_membs==i);
    meanval = mean(img_as_column(inds));
    labelim(inds) = meanval;
end
```

Slide credit: Kristen Grauman
K-Means Clustering

- Java demo:
 http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
K-Means++

- Can we prevent arbitrarily bad local minima?
 1. Randomly choose first center.
 2. Pick new center with prob. proportional to $||p - c_i||^2$ (Contribution of p to total error)
 3. Repeat until k centers.

- Expected error = $O(\log k) \times \text{optimal}$

Arthur & Vassilvitskii 2007
Feature Space

• Depending on what we choose as the *feature space*, we can group pixels in different ways.

• Grouping pixels based on **intensity** similarity

• Feature space: intensity value (1D)
Feature Space

- Depending on what we choose as the *feature space*, we can group pixels in different ways.

- Grouping pixels based on *color* similarity

- Feature space: color value (3D)

Slide credit: Kristen Grauman
Segmentation as Clustering

- Depending on what we choose as the feature space, we can group pixels in different ways.

- Grouping pixels based on texture similarity

- Feature space: filter bank responses (e.g., 24D)

Slide credit: Kristen Grauman
Smoothing Out Cluster Assignments

- Assigning a cluster label per pixel may yield outliers:

- How can we ensure they are spatially smooth?

Slide credit: Kristen Grauman
Segmentation as Clustering

- Depending on what we choose as the *feature space*, we can group pixels in different ways.

- Grouping pixels based on *intensity*+*position* similarity

⇒ Way to encode both *similarity* and *proximity*.

Slide credit: Kristen Grauman
K-Means Clustering Results

- K-means clustering based on intensity or color is essentially vector quantization of the image attributes
 - Clusters don’t have to be spatially coherent

Slide credit: Svetlana Lazebnik
B. Leibe
Image source: Forsyth & Ponce
K-Means Clustering Results

- K-means clustering based on intensity or color is essentially vector quantization of the image attributes
 - Clusters don’t have to be spatially coherent
- Clustering based on \((r,g,b,x,y)\) values enforces more spatial coherence
Summary K-Means

- **Pros**
 - Simple, fast to compute
 - Converges to local minimum of within-cluster squared error

- **Cons/issues**
 - Setting k?
 - Sensitive to initial centers
 - Sensitive to outliers
 - Detects spherical clusters only
 - Assuming means can be computed

Slide credit: Kristen Grauman
Topics of This Lecture

- Segmentation and grouping
 - Gestalt principles
 - Image Segmentation

- Segmentation as clustering
 - k-Means
 - Feature spaces

- Probabilistic clustering
 - Mixture of Gaussians, EM

- Model-free clustering
 - Mean-Shift clustering

- Graph theoretic segmentation
 - Normalized Cuts
Probabilistic Clustering

- Basic questions
 - What’s the probability that a point x is in cluster m?
 - What’s the shape of each cluster?
- K-means doesn’t answer these questions.

- Basic idea
 - Instead of treating the data as a bunch of points, assume that they are all generated by sampling a continuous function.
 - This function is called a generative model.
 - Defined by a vector of parameters θ
Mixture of Gaussians

- One generative model is a mixture of Gaussians (MoG)
 - K Gaussian blobs with means μ_b covariance matrices V_b, dimension d
 - Blob b defined by: $P(x|\mu_b, V_b) = \frac{1}{\sqrt{(2\pi)^d|V_b|}}e^{-\frac{1}{2}(x-\mu_b)^T V_b^{-1}(x-\mu_b)}$
 - Blob b is selected with probability α_b
 - The likelihood of observing x is a weighted mixture of Gaussians
 $$P(x|\theta) = \sum_{b=1}^{K} \alpha_b P(x|\theta_b), \quad \theta = [\mu_1, \ldots, \mu_n, V_1, \ldots, V_n]$$
Expectation Maximization (EM)

- **Goal**
 - Find blob parameters θ that maximize the likelihood function:
 \[
P(data|\theta) = \prod_x P(x|\theta)
 \]

- **Approach**:
 1. **E-step**: given current guess of blobs, compute ownership of each point
 2. **M-step**: given ownership probabilities, update blobs to maximize likelihood function
 3. Repeat until convergence

Slide credit: Steve Seitz

B. Leibe
EM Details

- **E-step**

 - Compute probability that point x is in blob b, given current guess of θ

 $$P(b|x, \mu_b, V_b) = \frac{\alpha_b P(x|\mu_b, V_b)}{\sum_{i=1}^{K} \alpha_i P(x|\mu_i, V_i)}$$

- **M-step**

 - Compute probability that blob b is selected

 $$\alpha_b^{new} = \frac{1}{N} \sum_{i=1}^{N} P(b|x_i, \mu_b, V_b) \quad (N \text{ data points})$$

 - Mean of blob b

 $$\mu_b^{new} = \frac{\sum_{i=1}^{N} x_i P(b|x_i, \mu_b, V_b)}{\sum_{i=1}^{N} P(b|x_i, \mu_b, V_b)}$$

 - Covariance of blob b

 $$V_b^{new} = \frac{\sum_{i=1}^{N} (x_i - \mu_b^{new})(x_i - \mu_b^{new})^T P(b|x_i, \mu_b, V_b)}{\sum_{i=1}^{N} P(b|x_i, \mu_b, V_b)}$$
Applications of EM

- Turns out this is useful for all sorts of problems
 - Any clustering problem
 - Any model estimation problem
 - Missing data problems
 - Finding outliers
 - Segmentation problems
 - Segmentation based on color
 - Segmentation based on motion
 - Foreground/background separation
 - ...

- EM demo

Slide credit: Steve Seitz
Segmentation with EM

Original image

EM segmentation results

k=2
k=3
k=4
k=5

Image source: Serge Belongie
Summary: Mixtures of Gaussians, EM

- **Pros**
 - Probabilistic interpretation
 - Soft assignments between data points and clusters
 - Generative model, can predict novel data points
 - Relatively compact storage

- **Cons**
 - Local minima
 - k-means is NP-hard even with k=2
 - Initialization
 - Often a good idea to start with some k-means iterations.
 - Need to know number of components
 - Solutions: model selection (AIC, BIC), Dirichlet process mixture
 - Need to choose generative model
 - Numerical problems are often a nuisance
Topics of This Lecture

- Segmentation and grouping
 - Gestalt principles
 - Image segmentation

- Segmentation as clustering
 - k-Means
 - Feature spaces

- Probabilistic clustering
 - Mixture of Gaussians, EM

- Model-free clustering
 - Mean-Shift clustering

- Graph theoretic segmentation
 - Normalized Cuts

B. Leibe
Finding Modes in a Histogram

- How many modes are there?
 - Mode = local maximum of the density of a given distribution
 - Easy to see, hard to compute
Mean-Shift Segmentation

- An advanced and versatile technique for clustering-based segmentation

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
Mean-Shift Algorithm

- **Iterative Mode Search**
 1. Initialize random seed, and window W
 2. Calculate center of gravity (the “mean”) of W: $\sum_{x \in W} xH(x)$
 3. Shift the search window to the mean
 4. Repeat Step 2 until convergence

Slide credit: Steve Seitz
Mean-Shift

Region of interest
Center of mass
Mean Shift vector

Slide by Y. Ukrainitz & B. Sarel
Mean-Shift
Mean-Shift

Region of interest

Center of mass

Mean Shift vector
Mean-Shift

Region of interest
Center of mass
Mean Shift vector

Slide by Y. Ukrainitz & B. Sarel
Mean-Shift

Region of interest

Center of mass

Mean Shift vector

Slide by Y. Ukrainitz & B. Sarel

Computer Vision WS 08/09
Mean-Shift

Region of interest
Center of mass

Mean Shift vector

Slide by Y. Ukrainitz & B. Sarel
Mean-Shift

Region of interest
Center of mass

Slide by Y. Ukrainitz & B. Sarel
Real Modality Analysis

Tessellate the space with windows

Run the procedure in parallel

Slide by Y. Ukrainitz & B. Sarel
Real Modality Analysis

The blue data points were traversed by the windows towards the mode.

Slide by Y. Ukrainitz & B. Sarel
Mean-Shift Clustering

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode
Mean-Shift Clustering/Segmentation

- Find features (color, gradients, texture, etc)
- Initialize windows at individual pixel locations
- Perform mean shift for each window until convergence
- Merge windows that end up near the same “peak” or mode

Slide credit: Svetlana Lazebnik
Mean-Shift Segmentation Results

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Slide credit: Svetlana Lazebnik
More Results
More Results
Problem: Computational Complexity

- Need to shift many windows...
- Many computations will be redundant.

B. Leibe
1. Assign all points within radius r of end point to the mode.

B. Leibe
2. Assign all points within radius r/c of the search path to the mode.

B. Leibe
Summary Mean-Shift

• **Pros**
 - General, application-independent tool
 - Model-free, does not assume any prior shape (spherical, elliptical, etc.) on data clusters
 - Just a single parameter (window size \(h \))
 - \(h \) has a physical meaning (unlike k-means)
 - Finds variable number of modes
 - Robust to outliers

• **Cons**
 - Output depends on window size
 - Window size (bandwidth) selection is not trivial
 - Computationally (relatively) expensive (\(~2s/image\))
 - Does not scale well with dimension of feature space
Segmentation: Caveats

- We’ve looked at bottom-up ways to segment an image into regions, yet finding meaningful segments is intertwined with the recognition problem.
- Often want to avoid making hard decisions too soon
- Difficult to evaluate; when is a segmentation successful?
Generic Clustering

• We have focused on ways to group pixels into image segments based on their appearance
 - Find groups; “quantize” feature space

• In general, we can use clustering techniques to find groups of similar “tokens”, provided we know how to compare the tokens.
 - *E.g.*, segment an image into the types of motions present
 - *E.g.*, segment a video into the types of scenes (shots) present
References and Further Reading

- Background information on segmentation by clustering and on Normalized Cuts can be found in Chapter 14 of

- More on the EM algorithm can be found in Chapter 16.1.2.

- Read Max Wertheimer’s classic thoughts on Gestalt
 - http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm

- Try the k-means and EM demos at
 - http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html