Computer Vision - Lecture 10
Sliding-Window based Object Detection
3.12.2009

Bastian Leibe
RWTH Aachen
http://www.umic.rwth-aachen.de/multimedia
leibe@umic.rwth-aachen.de

Recap: Subspace Methods

Recap: Obj. Detection by Distance TO Eigenspace

Scan a window ω over the image and classify the window as object or non-object as follows:
- Project window to subspace and reconstruct as earlier.
- Compute the distance between ω and the reconstruction (reprojection error).
- Local minima of distance over all image locations \Rightarrow object locations.
- Repeat at different scales.
- Possibly normalize window intensity such that $|\omega|=1$.

Recap: Obj. Identification by Distance IN Eigenspace

- Objects are represented as coordinates in an n-dim. eigenspace.
- Example:
 - 3D space with points representing individual objects or a manifold representing parametric eigenspace (e.g., orientation, pose, illumination).
- Estimate parameters by finding the NN in the eigenspace.

Course Outline

- Image Processing Basics
- Segmentation & Grouping
- Recognition
 - Global Representations
 - Subspace Representations (remainder)
- Object Categorization I
 - Sliding Window based Object Detection
- Local Features & Matching
- Object Categorization II
- Part based Approaches
- 3D Reconstruction
- Motion and Tracking

Recap: Eigenfaces
Recap: Restrictions of PCA

- PCA minimizes projection error
- PCA is "unsupervised" no information on classes is used
- Discriminating information might be lost

Fischer’s Linear Discriminant Analysis (FLD)

- FLD is an enhancement to PCA
 - Constructs a discriminant subspace that minimizes the scatter between images of the same class and maximizes the scatter between different class images
 - Also sometimes called LDA...

Mean Images

- Let \(X_1, X_2, \ldots, X_c \) be the classes in the database and let each class \(X_i \), \(i = 1, 2, \ldots, c \) have \(k \) images \(x_{ij} \), \(j = 1, 2, \ldots, k \).
- We compute the mean image \(\mu_i \) of each class \(X_i \) as:
 \[
 \mu_i = \frac{1}{k} \sum_{j=1}^{k} x_{ij}
 \]
- Now, the mean image \(\mu \) of all the classes in the database can be calculated as:
 \[
 \mu = \frac{1}{c} \sum_{i=1}^{c} \mu_i
 \]

Scatter Matrices

- We calculate the within-class scatter matrix as:
 \[
 S_w = \sum_{i=1}^{c} \sum_{j=x_{ij}}(x_{ij} - \mu_i)(x_{ij} - \mu_i)^T
 \]
- We calculate the between-class scatter matrix as:
 \[
 S_b = \sum_{i=1}^{c} N_i(\mu_i - \mu)(\mu_i - \mu)^T
 \]

Visualization

- We maximize distance between classes
- Minimize distance within a class
- Criterion: \(J(w) = w^T S_w w + \sum_{i=1}^{c} \lambda_i S_{w_i} w \)
- \(S_b \) ... between-class scatter matrix
- \(S_w \) ... within-class scatter matrix
- Vector \(w \) is a solution of a generalized eigenvalue problem
- Classification function:
 \[
 g(x) = w^T x + w_0 \geq 0
 \]
FLD Computation

- Maximization of
 \[J(w) = \frac{w^T S_b w}{w^T S_w w} \]
 is given by solution of generalized eigenvalue problem
 \[S_b w = \lambda S_w w \]
- Defining \(v = S_b^{-1} w \) we get
 \[S_b^{-1} S_w^{-1} v = \lambda v \]
 which is a regular eigenvalue problem.
- For the c-class case we obtain (at most) c-1 projections.

Face Recognition Difficulty: Lighting

- The same person can appear dramatically different when light sources illuminate the face from different directions.
- Idea:
 - Use FLD to find class-specific linear projections that compensate for lighting/facial expression.

Application: Fisherfaces

- Singularity problem
 - The within-class scatter is always singular for face recognition, since #training images << #pixels
 - This problem is overcome by applying PCA first
 \[
 W_{PC}^T = W_{PC}^T W_{PC}^{-1} \\
 W_{PC} = \text{arg max } \|W^T S_{PC} W\| \\
 W_{AI} = \text{arg max } \|W^T S_{AI} W_{PC} W\| \\
 \]

Fisherfaces: Experiments

Example Application: Fisherfaces

- Visual discrimination task
 - Training data:
 - \(C_1 \): Subjects with glasses
 - \(C_2 \): Subjects without glasses
 - Test:
 - glasses?
 - Take each image as a vector of pixel values and apply FLD...
Fisherfaces: Interpretability

- Example Fisherface for recognition “Glasses/NoGlasses”

Recap: Fisherfaces

- Example Fisherface for recognition “Glasses/NoGlasses”

Topics of This Lecture

- Object Categorization
 - Problem Definition
 - Challenges
- Sliding-Window based Object Detection
 - Detection via Classification
 - Global Representations
 - Classifier Construction
- Classification with Boosting
 - AdaBoost
 - Viola-Jones Face Detection
- Classification with SVMs
 - Support Vector Machines
 - HOG Detector

Identification vs. Categorization

- Find this particular object
- Recognize ANY car
- Recognize ANY cow

Object Categorization - Potential Applications

There is a wide range of applications, including:

- Autonomous robots
- Navigation, driver safety
- Consumer electronics
- Content-based retrieval and analysis for images and videos
- Medical image analysis
Object Categorization

- **Task Description**
 - “Given a small number of training images of a category, recognize a-priori unknown instances of that category and assign the correct category label.”

- **Which categories are feasible visually?**
 - Extensively studied in Cognitive Psychology, e.g. [Brown'58]

Visual Object Categories

- **Basic-level categories in human categorization**
 - Basic-level categorization is easier and faster for humans than object identification.
 - Most promising starting point for visual classification.

How many object categories are there?

Source: Fei-Fei Li, Rob Fergus, Antonio Torralba.

Other Types of Categories

- **Functional Categories**
 - e.g. chairs = “something you can sit on”

- **Ad-hoc categories**
 - e.g. “something you can find in an office environment”
Challenges: Robustness

- Detection in crowded, real-world scenes
- Learn object variability
- Changes in appearance, scale, and articulation
- Compensate for clutter, overlap, and occlusion

Topics of This Lecture

- Object Categorization
 - Problem Definition
 - Challenges

 - Sliding-Window based Object Detection
 - Detection via Classification
 - Global Representations
 - Classifier Construction

 - Classification with Boosting
 - Adaboost
 - Viola-Jones Face Detection

 - Classification with SVMs
 - Support Vector Machines
 - HOG Detector

Detection via Classification: Main Idea

- Basic component: a binary classifier

Detection via Classification: Main Idea

- If object may be in a cluttered scene, slide a window around looking for it.

- Essentially, this is a brute-force approach with many local decisions.

What is a Sliding Window Approach?

- Search over space and scale

- Detection as subwindow classification problem

- "In the absence of a more intelligent strategy, any global image classification approach can be converted into a localization approach by using a sliding-window search."

Slide credit: Kristen Grauman
Detection via Classification: Main Idea

Fleshing out this pipeline a bit more, we need to:
1. Obtain training data
2. Define features
3. Define classifier

Feature extraction:
- Car/non-car Classifier

Training examples

Feature extraction

Car/non-car

Classifier

Feature Extraction: Global Appearance

Simple holistic descriptions of image content
- Grayscale / color histogram
- Vector of pixel intensities

Eigenfaces: Global Appearance Description

This can also be applied in a sliding-window framework...

Generate low-dimensional representation of appearance with a linear subspace.

Project new images to "face space".

Recognition via nearest neighbors in face space.

Feature Extraction: Global Appearance

- Pixel-based representations sensitive to small shifts
- Color or grayscale-based appearance description can be sensitive to illumination and intra-class appearance variation

Gradient-based Representations

- Consider edges, contours, and (oriented) intensity gradients

- Summarize local distribution of gradients with histogram
 - Locally orderless: offers invariance to small shifts and rotations
 - Contrast-normalization: try to correct for variable illumination
Gradient-based Representations: Histograms of Oriented Gradients (HoG)

Map each grid cell in the input window to a histogram counting the gradients per orientation.

Code available: http://pascal.inrialpes.fr/software/olt/

B. Leibe

Classifier Construction

• How to compute a decision for each subwindow?

Discriminative Methods

• Learn a decision rule (classifier) assigning image features to different classes

Classifier Construction: Many Choices...

• Nearest neighbor
 Shakhnarovich, Viola, Darrell 2003
 Berg, Berg, Malik 2005...

• Neural networks
 LeCun, Bottou, Bengio, Haffner 1998
 Rowley, Baluja, Kanade 1998...

• Support Vector Machines
 Guyon, Vapnik, Heilebe, Serre, Poggio, 2001,...

• Boosting
 Viola, Jones 2001,
 Torralba et al. 2004,
 Opelt et al. 2006,...

• Conditional Random Fields
 McCallum, Freitag, Pereira 2000;
 Kumar, Hebert 2003, ...

Boosting

• Build a strong classifier by combining number of “weak classifiers”, which need only be better than chance
• Sequential learning process: at each iteration, add a weak classifier
• Flexible to choice of weak learner
 Including fast simple classifiers that alone may be inaccurate
• We’ll look at Freund & Schapire’s AdaBoost algorithm
 Easy to implement
 Base learning algorithm for Viola-Jones face detector

AdaBoost: Intuition

Consider a 2D feature space with positive and negative examples.

Each weak classifier splits the training examples with at least 50% accuracy.

Examples misclassified by a previous weak learner are given more emphasis at future rounds.
AdaBoost: Intuition

Week Classifer 1

Weights Increased

Week Classifer 2

AdaBoost Algorithm

Start with uniform weights on training examples

For T rounds:

- Evaluate weighted error for each feature, pick best.
- Re-weight the examples:
 - Incorrectly classified ⇒ more weight
 - Correctly classified ⇒ less weight

Final classifier is combination of the weak classifiers.

Example: Face Detection

- Frontal faces are a good example of a class where global appearance models + a sliding window detection approach fit well:
 - Regular 2D structure
 - Center of face almost shaped like a "patch"/window

Now we'll take AdaBoost and see how the Viola-Jones face detector works.

Feature extraction

"Rectangular" filters

Feature output is difference between adjacent regions

Efficiently computable with integral image; any sum can be computed in constant time

Avoid scaling images ⇒ scale features directly for same cost

Example

Integral Image

Value at (x,y) is sum of pixels above and to the left of (x,y)

\[
\sum_{y=0}^{y} \sum_{x=0}^{x} (I(x',y') - I(x,y))
\]

\[I(x',y') = \begin{cases} +1 & \text{if } \left| y - y' \right| < \frac{1}{2} \text{ and } \left| x - x' \right| < \frac{1}{2} \\ -1 & \text{otherwise} \end{cases}
\]

Viola & Jones, CVPR 2001

Slide credit: Kristen Grauman
Large Library of Filters

Considering all possible filter parameters: position, scale, and type: 180,000+ possible features associated with each 24 x 24 window.

Use AdaBoost both to select the informative features and to form the classifier.

AdaBoost Algorithm

Start with uniform weights on training examples.

- For T rounds:
 - Evaluate weighted error for each feature, pick best.
 - Re-weight the examples:
 - Incorrectly classified: more weight
 - Correctly classified: less weight

Final classifier is combination of the weak ones, weighted according to the error they had.

AdaBoost for Feature+Classifier Selection

- Want to select the single rectangle feature and threshold that best separates positive (faces) and negative (non-faces) training examples, in terms of weighted error.

Resulting weak classifier:

\[h_i(x) = \begin{cases}
+1 & \text{if } f_i(x) > 0_i \\
-1 & \text{otherwise}
\end{cases} \]

For next round, reweight the examples according to errors, choose another filter/threshold combo.

AdaBoost for Efficient Feature Selection

- Image features = weak classifiers
- For each round of boosting:
 - Evaluate each rectangle filter on each example
 - Sort examples by filter values
 - Select best threshold for each filter (min error)
 - Sorted list can be quickly scanned for the optimal threshold

- Select best filter/threshold combination
- Weight on this features is a simple function of error rate
- Reweight examples

Cascading Classifiers for Detection

- Even if the filters are fast to compute, each new image has a lot of possible windows to search.
- For efficiency, apply less accurate but faster classifiers first to immediately discard windows that clearly appear to be negative; e.g.,
 - Filter for promising regions with an initial inexpensive classifier
 - Build a chain of classifiers, choosing cheap ones with low false negative rates early in the chain

Cascading Classifiers

- Chain classifiers that are progressively more complex and have lower false positive rates.
Viola-Jones Face Detector: Summary

- Train with 5K positives, 350M negatives
- Real-time detector using 38 layer cascade
- 6061 features in final layer
- [Implementation available in OpenCV:](http://sourceforge.net/projects/opencvlibrary/)

Viola-Jones Face Detector: Results

- **Performance**
 - 384 by 288 pixel images detected at 15 fps on a conventional 700 MHz Intel Pentium III in 2001.
 - Training time = weeks

Detecting profile faces?

Detecting profile faces requires training separate detector with profile examples.
Viola-Jones Face Detector: Results

The Viola & Jones detector was a huge success:
- First real-time face detector available
- Many derivative works and improvements

C++ implementation available in OpenCV [Lienhart, 2002]
- http://sourceforge.net/projects/opencvlibrary/
- Matlab wrappers for OpenCV code available, e.g. here

Example Application

Frontal faces detected and then tracked, character names inferred with alignment of script and subtitles.

Everingham, M., Sivic, J. and Zisserman, A. "Hello! My name is... Buffy" - Automatic naming of characters in TV video, BMVC 2006.
- http://www.robots.ox.ac.uk/~vgg/research/nface/index.html

Classifier construction: many choices...

- Nearest neighbor
 - Shakhnarovich, Viola, Darrell 2003
 - Berg, Berg, Malik 2005...
- Neural networks
 - LeCun, Bottou, Bengio, Haffner 1998
 - Rowley, Baluja, Kanade 1998...
- Support Vector Machines
 - Guyon, Vapnik Heisele, Serre, Poggio 2001...
- Boosting
 - Viola, Jones 2001
 - Torralba et al. 2004, Opelt et al. 2006...
- Conditional Random Fields
 - McCallum, Freitag, Pereira 2000, Kumar, Hebert 2003, ...

Linear Classifiers

- Let
 \[\mathbf{w} = \begin{bmatrix} a \\ c \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix} \]
 \[a \mathbf{x} + c \mathbf{y} + b = 0 \]
Perceptual and Sensory Augmented Computing
Computer Vision WS 09/10

Lines in \mathbb{R}^2

Let $\mathbf{w} = \begin{bmatrix} a \\ c \\ b \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$

\[ax + cy + b = 0 \]

\[\mathbf{w} \cdot \mathbf{x} + b = 0 \]

Linear Classifiers

- Find linear function to separate positive and negative examples

\[x_i \text{ positive: } x_i \cdot w + b \geq 0 \]

\[x_i \text{ negative: } x_i \cdot w + b < 0 \]

Support Vector Machines (SVMs)

- Discriminative classifier based on optimal separating hyperplane (i.e. line for 2D case)

- Maximize the margin between the positive and negative training examples

Support Vector Machines (SVMs)

- Want line that maximizes the margin.

\[x_i \text{ positive (} y_i = 1\text{): } x_i \cdot w + b \geq 1 \]

\[x_i \text{ negative (} y_i = -1\text{): } x_i \cdot w + b \leq -1 \]

For support vectors, $x_i \cdot w + b = \pm 1$

Finding the Maximum Margin Line

- Solution: $\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i$

- Classification function:

\[f(x) = \text{sign} (\mathbf{w} \cdot \mathbf{x} + b) \]

- If $f(x) < 0$, classify as neg., if $f(x) > 0$, classify as pos.

- Notice that it relies on an inner product between the test point \mathbf{x} and the support vectors \mathbf{x}_i

(Using the optimization problem also involves computing the inner products $\mathbf{x}_i \cdot \mathbf{x}_j$ between all pairs of training points)

Finding the Maximum Margin Line

- Solution: $\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i$

\[\mathbf{w} \cdot \mathbf{x} + b = \sum \alpha_i y_i \mathbf{x}_i \cdot \mathbf{x} + b \]

- Classification function:

\[f(x) = \text{sign} (\mathbf{w} \cdot \mathbf{x} + b) \]

- If $f(x) < 0$, classify as neg., if $f(x) > 0$, classify as pos.

- Notice that it relies on an inner product between the test point \mathbf{x} and the support vectors \mathbf{x}_i

(Solving the optimization problem also involves computing the inner products $\mathbf{x}_i \cdot \mathbf{x}_j$ between all pairs of training points)
Questions

• What if the features are not 2d?
• What if the data is not linearly separable?
• What if we have more than just two categories?

Non-Linear SVMs: Feature Spaces

• General idea: The original input space can be mapped to some higher-dimensional feature space where the training set is separable:

\[\Phi: x \rightarrow \phi(x) \]

More on that in the Machine Learning lecture...

Nonlinear SVMs

• The kernel trick: instead of explicitly computing the lifting transformation \(\phi(x) \), define a kernel function \(K \) such that

\[K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j) \]

• This gives a nonlinear decision boundary in the original feature space:

\[\sum \alpha_i y_i K(x_i, x) + b \]

Some Often-Used Kernel Functions

• Linear: \(K(x_i, x_j) = x_i^T x_j \)
• Polynomial of power \(p \): \(K(x_i, x_j) = (1 + x_i^T x_j)^p \)
• Gaussian (radial-basis function network):

\[K(x_i, x_j) = \exp\left(-\frac{|x_i - x_j|^2}{2\sigma^2}\right) \]
Questions

• What if the features are not 2d?
 ∗ Generalizes to d-dimensions - replace line with “hyperplane”

• What if the data is not linearly separable?
 ∗ Non-linear SVMs with special kernels

• What if we have more than just two categories?

Multi-Class SVMs

• Achieve multi-class classifier by combining a number of binary classifiers

 • One vs. all
 ∗ Training: learn an SVM for each class vs. the rest
 ∗ Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value

 • One vs. one
 ∗ Training: learn an SVM for each pair of classes
 ∗ Testing: each learned SVM “votes” for a class to assign to the test example

SVMs for Recognition

1. Define your representation for each example.

2. Select a kernel function.

3. Compute pairwise kernel values between labeled examples

4. Given this “kernel matrix” to SVM optimization software to identify support vectors & weights.

5. To classify a new example: compute kernel values between new input and support vectors, apply weights, check sign of output.

Pedestrian Detection

• Detecting upright, walking humans using sliding window’s appearance/texture; e.g.,

 SVM with Haar wavelets [Papageorgiou & Poggio, IJCV 2000]

 Space-time rectangle features [Viola, Jones & Snow, ICCV 2003]

 SVM with HoGs [Dalal & Triggs, CVPR 2005]

Example: Pedestrian Detection with HoG and SVMs

• Map each grid cell in the input window to a histogram counting the gradients per orientation.

• Train a linear SVM using training set of pedestrian vs. non-pedestrian windows.

Code available: http://pascal.inrialpes.fr/opencote/
Summary: Sliding-Windows

- **Pros**
 - Simple detection protocol to implement
 - Good feature choices critical
 - Past successes for certain classes
 - Good detectors available (Viola+Jones, HOG, etc.)

- **Cons/Limitations**
 - High computational complexity
 - For example: 250,000 locations x 30 orientations x 4 scales = 30,000,000 evaluations!
 - This puts tight constraints on the classifiers we can use.
 - If training binary detectors independently, this means cost increases linearly with number of classes.
 - With so many windows, false positive rate better be low

Limitations (continued)

- Non-rigid, deformable objects not captured well with representations assuming a fixed 2D structure; or must assume fixed viewpoint
- Objects with less-regular textures not captured well with holistic appearance-based descriptions

Limitations (continued)

- If considering windows in isolation, context is lost

References and Further Reading

- Read the Viola-Jones paper
 - (first version appeared at CVPR 2001)

- Viola-Jones Face Detector
 - C++ implementation available in OpenCV [Lienhart, 2002]
 - [http://sourceforge.net/projects/opencvlibrary/]
 - Matlab wrappers for OpenCV code available, e.g. here
 - [http://www.mathworks.com/matlabcentral/fileexchange/19912]

- HOG Detector
 - Code available: [http://pascal.inrialpes.fr/software/]

Limitations (continued)

- Not all objects are “box” shaped

Limitations (continued)

- In practice, often entails large, cropped training set (expensive)
- Requiring good match to a global appearance description can lead to sensitivity to partial occlusions