Computer Vision - Exercise 3

Segmentation and Grouping

24.11.2009

Tobias Weyand
RWTH Aachen
http://www.mmp.rwth-aachen.de

weyand@umic.rwth-aachen.de
Master/Diploma Thesis

Topic: Estimation of Human Pose and Motion using Nonparametric Belief Propagation

Requirements
1. Strong mathematical background
2. Knowledge in Computer Vision
3. Knowledge in Machine Learning
4. Programming experience in C++/Matlab

Contact Information
Georgios Floros
UMIC, room 127
Tel: + 49 (0) 241 80 20768
E-mail: floros@umic.rwth-aachen.de
Recap: Recognition Using Histograms

- Histogram comparison

Test image

Known objects
Recap: Comparison Measures

- Vector space interpretation
 - Euclidean distance

- Statistical motivation
 - Chi-square
 - Bhattacharyya

- Information-theoretic motivation
 - Kullback-Leibler divergence, Jeffreys divergence

- Histogram motivation
 - Histogram intersection

- Ground distance
 - Earth Movers Distance (EMD)
Recap: Recognition Using Histograms

• Simple algorithm
 1. Build a set of histograms $H=\{h_i\}$ for each known object
 ➢ More exactly, for each view of each object
 2. Build a histogram h_t for the test image.
 3. Compare h_t to each $h_i \in H$
 ➢ Using a suitable comparison measure
 4. Select the object with the best matching score
 ➢ Or reject the test image if no object is similar enough.

“Nearest-Neighbor” strategy
Recap: Mean-Shift Segmentation

- An advanced and versatile technique for clustering-based segmentation

<table>
<thead>
<tr>
<th>Segmented "landscape 1"</th>
<th>Segmented "landscape 2"</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Slide credit: Svetlana Lazebnik
Recap: Mean-Shift Algorithm

- **Iterative Mode Search**
 1. Initialize random seed, and window W
 2. Calculate center of gravity (the “mean”) of W: \[\sum_{x \in W} x H(x) \]
 3. Shift the search window to the mean
 4. Repeat Step 2 until convergence
Mean-Shift

Region of interest
Center of mass
Mean Shift vector

Slide by Y. Ukrainitz & B. Sarel
Mean-Shift

Region of interest
Center of mass

Mean Shift vector

Slide by Y. Ukrainitz & B. Sarel
Mean-Shift

Region of interest
Center of mass
Mean Shift vector

Slide by Y. Ukrainitz & B. Sarel
Mean-Shift

Region of interest

Center of mass

Mean Shift vector
Mean-Shift

Region of interest
Center of mass
Mean Shift vector

Slide by Y. Ukrainitz & B. Sarel
Mean-Shift

Region of interest
Center of mass

Mean Shift vector

Slide by Y. Ukrainitz & B. Sarel
Mean-Shift

Region of interest

Center of mass
Real Modality Analysis

Tessellate the space with windows

Run the procedure in parallel

Slide by Y. Ukrainitz & B. Sarel
The blue data points were traversed by the windows towards the mode.
Mean-Shift Clustering

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode
Mean-Shift Clustering/Segmentation

- Find features (color, gradients, texture, etc)
- Initialize windows at individual pixel locations
- Perform mean shift for each window until convergence
- Merge windows that end up near the same “peak” or mode

Slide credit: Svetlana Lazebnik
Mean-Shift Segmentation Results

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Slide credit: Svetlana Lazebnik