Computer Vision - Lecture 6
Segmentation and Grouping
10.11.2011

Bastian Leibe
RWTH Aachen
http://www.mmp.rwth-aachen.de
leibe@umic.rwth-aachen.de

Examples of Grouping in Vision

What things should be grouped?
What cues indicate groups?

Object-level grouping

Slide credit: Kristen Grauman
B. Leibe

Similarity

Slide credit: Kristen Grauman
B. Leibe

Symmetry

Slide credit: Kristen Grauman
B. Leibe

Course Outline

- Image Processing Basics
- Segmentation
 - Segmentation and Grouping
 - Graph-theoretic Segmentation
- Recognition
 - Global Representations
 - Subspace representations
- Local Features & Matching
- Object Categorization
- 3D Reconstruction
- Motion and Tracking

Slide credit: Kristen Grauman
B. Leibe

Common Fate

Image credit: Arthus-Bertrand (via F. Durand)

Slide credit: Kristen Grauman
B. Leibe
The Gestalt School

- Grouping is key to visual perception
- Elements in a collection can have properties that result from relationships
 - “The whole is greater than the sum of its parts”

Gestalt Factors

- These factors make intuitive sense, but are very difficult to translate into algorithms.

Gestalt Theory

- Gestalt: whole or group
 - Whole is greater than sum of its parts
 - Relationships among parts can yield new properties/features
- Psychologists identified series of factors that predispose set of elements to be grouped (by human visual system)

Continuity through Occlusion Cues
Continuity through Occlusion Cues

Continuity, explanation by occlusion

Figure-Ground Discrimination

The Ultimate Gestalt?

Image Segmentation

- Goal: identify groups of pixels that go together
The Goals of Segmentation

• Separate image into coherent “objects”

Image

Human segmentation

The Goals of Segmentation

• Separate image into coherent “objects”

Group together similar-looking pixels for efficiency of further processing

“superpixels”

Topics of This Lecture

• Segmentation and grouping
 - Gestalt principles
 - Image Segmentation

• Segmentation as clustering
 - k-Means
 - Feature spaces

• Probabilistic clustering
 - Mixtures of Gaussians, EM

• Model-free clustering
 - Mean-Shift clustering

Image Segmentation: Toy Example

• These intensities define the three groups.
• We could label every pixel in the image according to which of these primary intensities it is.
 - i.e., segment the image based on the intensity feature.
• What if the image isn’t quite so simple?

• Now how to determine the three main intensities that define our groups?
• We need to cluster.
Clustering
• With this objective, it is a "chicken and egg" problem:
 - If we knew the cluster centers, we could allocate points to
groups by assigning each to its closest center.
 - If we knew the group memberships, we could get the centers by
 computing the mean per group.

K-Means Clustering
• Basic idea: randomly initialize the \(k \) cluster centers, and
iterate between the two steps we just saw.
 1. Randomly initialize the cluster centers, \(c_1, \ldots, c_k \).
 2. Given cluster centers, determine points in each cluster
 - For each point \(p \), find the closest \(c_i \). Put \(p \) into cluster \(i \)
 3. Given points in each cluster, solve for \(c_i \)
 - Set \(c_i \) to be the mean of points in cluster \(i \)
 4. If \(c_i \) have changed, repeat Step 2

Properties
• Will always converge to some solution
• Can be a "local minimum"
 - Does not always find the global minimum of objective function:
 \[
 \sum_{i} \sum_{p \text{ in cluster } i} \| p - c_i \|^2
 \]

Java demo:
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

Segmentation as Clustering
\(K=2 \)
\(K=3 \)

K-Means++
• Can we prevent arbitrarily bad local minima?
 1. Randomly choose first center.
 2. Pick new center with prob. proportional to
 \[\frac{1}{\sum_{i} \sum_{p \text{ in cluster } i} \| p - c_i \|^2} \]
 3. Repeat until \(k \) centers.

• Expected error \(= O(\log k) \) * optimal

Arthur & Vassilvitskii 2007
Feature Space

- Depending on what we choose as the feature space, we can group pixels in different ways.
- Grouping pixels based on intensity similarity
- Feature space: intensity value (1D)

Segmentation as Clustering

- Depending on what we choose as the feature space, we can group pixels in different ways.
- Grouping pixels based on texture similarity
- Feature space: filter bank responses (e.g., 24D)

Smoothing Out Cluster Assignments

- Assigning a cluster label per pixel may yield outliers:
- How can we ensure they are spatially smooth?

K-Means Clustering Results

- K-means clustering based on intensity or color is essentially vector quantization of the image attributes:
 - Clusters don’t have to be spatially coherent

Perceptual and Sensory Augmented Computing
Computer Vision WS 11/12

Slide credit: Kristen Grauman
K-Means Clustering Results

- K-means clustering based on intensity or color is essentially vector quantization of the image attributes
 - Clusters don’t have to be spatially coherent
- Clustering based on (r,g,b,x,y) values enforces more spatial coherence

Summary K-Means

- Pros
 - Simple, fast to compute
 - Converges to local minimum of within-cluster squared error
- Cons/Issues
 - Setting k?
 - Sensitive to initial centers
 - Sensitive to outliers
 - Detects spherical clusters only
 - Assuming means can be computed

Topics of This Lecture

- Segmentation and grouping
 - Gestalt principles
 - Image Segmentation
- Segmentation as clustering
 - K-means
 - Feature spaces
- Probabilistic clustering
 - Mixture of Gaussians, EM
- Model-free clustering
 - Mean-shift clustering

Probabilistic Clustering

- Basic questions
 - What’s the probability that a point x is in cluster m?
 - What’s the shape of each cluster?
- K-means doesn’t answer these questions.

Basic idea

- Instead of treating the data as a bunch of points, assume that they are all generated by sampling a continuous function.
- This function is called a generative model.
- Defined by a vector of parameters \(\theta \)

Mixture of Gaussians

- One generative model is a mixture of Gaussians (MoG)
 - K Gaussian blobs with means \(\mu_b \), covariance matrices \(V_b \), dimension d
 - Blob b defined by:
 \[
 P(x|\theta_b) = \frac{1}{\sqrt{(2\pi)^d|V_b|}} e^{-\frac{1}{2}(x-\mu_b)^T V_b^{-1}(x-\mu_b)}
 \]
 - Blob b is selected with probability \(x_b \)
 - The likelihood of observing x is a weighted mixture of Gaussians
 \[
 P(x|\theta) = \sum_{b=1}^{K} x_b P(x|\theta_b) \quad \theta = [\mu_1, \ldots, \mu_K, V_1, \ldots, V_K]
 \]

Expectation Maximization (EM)

- Goal
 - Find blob parameters \(\theta \) that maximize the likelihood function:
 \[
 P(\text{data}|\theta) = \prod_{x} P(x|\theta)
 \]
- Approach:
 1. E-step: given current guess of blobs, compute ownership of each point
 2. M-step: given ownership probabilities, update blobs to maximize likelihood function
 3. Repeat until convergence
EM Details

• **E-step**
 - Compute probability that point \(x \) is in blob \(b \), given current guess of \(\theta \)
 \[
P(b|x|\theta) = \frac{\alpha_b P(x|\mu_b, \Sigma_b)}{\sum_{i=1}^{K} \alpha_i P(x|\mu_i, \Sigma_i)}
\]

• **M-step**
 - Compute probability that blob \(b \) is selected
 \[
 \alpha_b^{(n+1)} = \frac{1}{N} \sum_{i=1}^{N} P(\theta|x_i, \mu_b, \Sigma_b)
 \]
 - Mean of blob \(b \)
 \[
 \mu_b^{(n+1)} = \frac{\sum_{i=1}^{N} x_i P(\theta|x_i, \mu_b, \Sigma_b)}{\sum_{i=1}^{N} P(\theta|x_i, \mu_b, \Sigma_b)}
 \]
 - Covariance of blob \(b \)
 \[
 \Sigma_b^{(n+1)} = \frac{\sum_{i=1}^{N} (x_i - \mu_b^{(n+1)})(x_i - \mu_b^{(n+1)})^T P(\theta|x_i, \mu_b, \Sigma_b)}{\sum_{i=1}^{N} P(\theta|x_i, \mu_b, \Sigma_b)}
 \]

Applications of EM

• Turns out this is useful for all sorts of problems
 - Any clustering problem
 - Any model estimation problem
 - Missing data problems
 - Finding outliers
 - Segmentation problems
 - Segmentation based on color
 - Segmentation based on motion
 - Foreground/background separation
 - ...

• EM demo

Segmentation with EM

Original image

EM segmentation results

Summary: Mixtures of Gaussians, EM

• **Pros**
 - Probabilistic interpretation
 - Soft assignments between data points and clusters
 - Generative model, can predict novel data points
 - Relatively compact storage

• **Cons**
 - Local minima
 - k-means is NP-hard even with \(k=2 \)
 - Initialization
 - Often a good idea to start with some k-means iterations.
 - Need to know number of components
 - Solutions: model selection (AIC, BIC), Dirichlet process mixture
 - Need to choose generative model
 - Numerical problems are often a nuisance

Topics of This Lecture

• Segmentation and grouping
 - Gestalt principles
 - Image segmentation

• Segmentation as clustering
 - k-means
 - Feature spaces
 - Probabilistic clustering
 - Mixtures of Gaussians, EM

• Model-free clustering
 - Mean-Shift clustering

Finding Modes in a Histogram

• How many modes are there?
 - Mode = local maximum of the density of a given distribution
 - Easy to see, hard to compute
Mean-Shift Segmentation

- An advanced and versatile technique for clustering-based segmentation

Mean-Shift Algorithm

- Iterative Mode Search
 1. Initialize random seed, and window W
 2. Calculate center of gravity (the “mean”) of W
 3. Shift the search window to the mean
 4. Repeat Step 2 until convergence

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Slide credits: Svetlana Lazebnik
Mean-Shift

- Region of interest
- Center of mass
- Mean Shift vector

Mean-Shift

- Region of interest
- Center of mass
- Mean Shift vector

Mean-Shift

- Region of interest
- Center of mass

Mean-Shift Clustering

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode

Real Modality Analysis

- Tessellate the space with windows
- Run the procedure in parallel

The blue data points were traversed by the windows towards the mode.
Mean-Shift Clustering/Segmentation

- Find features (color, gradients, texture, etc)
- Initialize windows at individual pixel locations
- Perform mean shift for each window until convergence
- Merge windows that end up near the same “peak” or mode

Mean-Shift Segmentation Results

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Problem: Computational Complexity

- Need to shift many windows...
- Many computations will be redundant.

Speedups: Basin of Attraction

1. Assign all points within radius r of end point to the mode.

Slide credit: Svetlana Lazebnik
Speedups

1. Assign all points within radius r/c of the search path to the mode.

Summary Mean-Shift

- **Pros**
 - General, application-independent tool
 - Model-free, does not assume any prior shape (spherical, elliptical, etc.) on data clusters
 - Just a single parameter (window size h)
 - h has a physical meaning (unlike k-means)
 - Finds variable number of modes
 - Robust to outliers

- **Cons**
 - Output depends on window size
 - Window size (bandwidth) selection is not trivial
 - Computationally (relatively) expensive (~2s/image)
 - Does not scale well with dimension of feature space

Segmentation: Caveats

- We’ve looked at **bottom-up** ways to segment an image into regions, yet finding meaningful segments is intertwined with the recognition problem.
- Often want to avoid making hard decisions too soon
- Difficult to evaluate; when is a segmentation successful?

Generic Clustering

- We have focused on ways to group pixels into image segments based on their appearance
 - Find groups; “quantize” feature space
- In general, we can use clustering techniques to find groups of similar “tokens”, provided we know how to compare the tokens.
 - E.g., segment an image into the types of motions present
 - E.g., segment a video into the types of scenes (shots) present

References and Further Reading

- Background information on segmentation by clustering and on Normalized Cuts can be found in Chapter 14 of
- More on the EM algorithm can be found in Chapter 16.1.2.
- Read Max Wertheimer’s classic thoughts on Gestalt
 - http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm
- Try the k-means and EM demos at
 - http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html