Computer Vision - Lecture 6

Segmentation and Grouping

10.11.2011

Bastian Leibe
RWTH Aachen
http://www.mmp.rwth-aachen.de

leibe@umic.rwth-aachen.de
Course Outline

• Image Processing Basics

• Segmentation
 - Segmentation and Grouping
 - Graph-theoretic Segmentation

• Recognition
 - Global Representations
 - Subspace representations

• Local Features & Matching

• Object Categorization

• 3D Reconstruction

• Motion and Tracking
Examples of Grouping in Vision

Determining image regions

What things should be grouped?

What cues indicate groups?

Grouping video frames into shots

Object-level grouping

Figure-ground

Slide credit: Kristen Grauman
Similarity

Slide credit: Kristen Grauman
Symmetry

Slide credit: Kristen Grauman

B. Leibe
Common Fate

Image credit: Arthus-Bertrand (via F. Durand)

Slide credit: Kristen Grauman

B. Leibe
Proximity

Slide credit: Kristen Grauman
http://www.capital.edu/Resources/Images/outside6_035.jpg
Muller-Lyer Illusion

- Gestalt principle: grouping is key to visual perception.
The Gestalt School

- Grouping is key to visual perception
- Elements in a collection can have properties that result from relationships
 - “The whole is greater than the sum of its parts”

Illusory/subjective contours

Occlusion

Familiar configuration

http://en.wikipedia.org/wiki/Gestalt_psychology

Slide credit: Svetlana Lazebnik

Image source: Steve Lehar
Gestalt Theory

• Gestalt: whole or group
 - Whole is greater than sum of its parts
 - Relationships among parts can yield new properties/features

• Psychologists identified series of factors that predispose set of elements to be grouped (by human visual system)

“I stand at the window and see a house, trees, sky. Theoretically I might say there were 327 brightnesses and nuances of colour. Do I have "327"? No. I have sky, house, and trees.”

Max Wertheimer
(1880-1943)

Untersuchungen zur Lehre von der Gestalt,
Psychologische Forschung, Vol. 4, pp. 301-350, 1923
http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm
Gestalt Factors

- Not grouped
- Proximity
- Similarity
- Similarity
- Common Fate
- Common Region

- These factors make intuitive sense, but are very difficult to translate into algorithms.

B. Leibe

Image source: Forsyth & Ponce
Continuity through Occlusion Cues
Continuity through Occlusion Cues

Continuity, explanation by occlusion
Continuity through Occlusion Cues

Image source: Forsyth & Ponce
Continuity through Occlusion Cues
Figure-Ground Discrimination
The Ultimate Gestalt?
Image Segmentation

- Goal: identify groups of pixels that go together
The Goals of Segmentation

- Separate image into coherent “objects”
The Goals of Segmentation

- Separate image into coherent “objects”
- Group together similar-looking pixels for efficiency of further processing

“superpixels”

Slide credit: Svetlana Lazebnik
Topics of This Lecture

- Segmentation and grouping
 - Gestalt principles
 - Image Segmentation

- Segmentation as clustering
 - k-Means
 - Feature spaces

- Probabilistic clustering
 - Mixture of Gaussians, EM

- Model-free clustering
 - Mean-Shift clustering
Image Segmentation: Toy Example

- These intensities define the three groups.
- We could label every pixel in the image according to which of these primary intensities it is.
 - i.e., segment the image based on the intensity feature.
- What if the image isn’t quite so simple?
Input image

Pixel count

Intensity

Input image

Pixel count

Intensity
• Now how to determine the three main intensities that define our groups?
• We need to cluster.
• Goal: choose three “centers” as the representative intensities, and label every pixel according to which of these centers it is nearest to.

• Best cluster centers are those that minimize SSD between all points and their nearest cluster center c_i:

$$
\sum_{\text{clusters } i} \sum_{\text{points } p \text{ in cluster } i} \|p - c_i\|^2
$$
Clustering

- With this objective, it is a “chicken and egg” problem:
 - If we knew the *cluster centers*, we could allocate points to groups by assigning each to its closest center.
 - If we knew the *group memberships*, we could get the centers by computing the mean per group.
K-Means Clustering

- Basic idea: randomly initialize the k cluster centers, and iterate between the two steps we just saw.

 1. Randomly initialize the cluster centers, c_1, \ldots, c_K
 2. Given cluster centers, determine points in each cluster
 - For each point p, find the closest c_i. Put p into cluster i
 3. Given points in each cluster, solve for c_i
 - Set c_i to be the mean of points in cluster i
 4. If c_i have changed, repeat Step 2

- Properties
 - Will always converge to some solution
 - Can be a “local minimum”
 - Does not always find the global minimum of objective function:
 $$\sum_{\text{clusters } i} \sum_{\text{points } p \text{ in cluster } i} ||p - c_i||^2$$

Slide credit: Steve Seitz
Segmentation as Clustering

```matlab
img_as_col = double(im(:));
cluster_membs = kmeans(img_as_col, K);

labelim = zeros(size(im));
for i=1:k
    inds = find(cluster_membs==i);
    meanval = mean(img_as_column(inds));
    labelim(inds) = meanval;
end
```

Slide credit: Kristen Grauman
K-Means Clustering

- Java demo:

 http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
K-Means++

- Can we prevent arbitrarily bad local minima?

1. Randomly choose first center.
2. Pick new center with prob. proportional to $\frac{1}{\sum_{i} ||p - c_i||^2}$ (Contribution of p to total error)
3. Repeat until k centers.

- Expected error = $O(\log k) * \text{optimal}$

Arthur & Vassilvitskii 2007
Feature Space

- Depending on what we choose as the feature space, we can group pixels in different ways.

- Grouping pixels based on intensity similarity

- Feature space: intensity value (1D)
Feature Space

- Depending on what we choose as the feature space, we can group pixels in different ways.

- Grouping pixels based on color similarity

- Feature space: color value (3D)

Slide credit: Kristen Grauman
Segmentation as Clustering

- Depending on what we choose as the feature space, we can group pixels in different ways.

- Grouping pixels based on texture similarity

- Feature space: filter bank responses (e.g., 24D)
Smoothing Out Cluster Assignments

• Assigning a cluster label per pixel may yield outliers:

• How can we ensure they are spatially smooth?

Slide credit: Kristen Grauman

B. Leibe
Segmentation as Clustering

- Depending on what we choose as the *feature space*, we can group pixels in different ways.

- Grouping pixels based on *intensity*+*position* similarity

⇒ Way to encode both *similarity* and *proximity*.
K-Means Clustering Results

- K-means clustering based on intensity or color is essentially vector quantization of the image attributes
 - Clusters don’t have to be spatially coherent

![Image](image.png)

Image source: Forsyth & Ponce
K-Means Clustering Results

- K-means clustering based on intensity or color is essentially vector quantization of the image attributes
 - Clusters don’t have to be spatially coherent
- Clustering based on (r,g,b,x,y) values enforces more spatial coherence
Summary K-Means

- **Pros**
 - Simple, fast to compute
 - Converges to local minimum of within-cluster squared error

- **Cons/issues**
 - Setting k?
 - Sensitive to initial centers
 - Sensitive to outliers
 - Detects spherical clusters only
 - Assuming means can be computed

Slide credit: Kristen Grauman
Topics of This Lecture

- Segmentation and grouping
 - Gestalt principles
 - Image Segmentation

- Segmentation as clustering
 - k-Means
 - Feature spaces

- Probabilistic clustering
 - Mixture of Gaussians, EM

- Model-free clustering
 - Mean-Shift clustering

B. Leibe
Probabilistic Clustering

- Basic questions
 - What’s the probability that a point x is in cluster m?
 - What’s the shape of each cluster?
- K-means doesn’t answer these questions.

- Basic idea
 - Instead of treating the data as a bunch of points, assume that they are all generated by sampling a continuous function.
 - This function is called a generative model.
 - Defined by a vector of parameters θ
One generative model is a mixture of Gaussians (MoG)

- K Gaussian blobs with means μ_b covariance matrices V_b, dimension d
 - Blob b defined by: $P(x|\mu_b, V_b) = \frac{1}{\sqrt{(2\pi)^d|V_b|}} e^{-\frac{1}{2}(x-\mu_b)^T V_b^{-1} (x-\mu_b)}$

- Blob b is selected with probability α_b

- The likelihood of observing x is a weighted mixture of Gaussians

$$P(x|\theta) = \sum_{b=1}^{K} \alpha_b P(x|\theta_b), \quad \theta = [\mu_1, \ldots, \mu_n, V_1, \ldots, V_n]$$
Expectation Maximization (EM)

- **Goal**
 - Find blob parameters θ that maximize the likelihood function:
 \[
 P(data|\theta) = \prod_x P(x|\theta)
 \]

- **Approach:**
 1. **E-step:** given current guess of blobs, compute ownership of each point
 2. **M-step:** given ownership probabilities, update blobs to maximize likelihood function
 3. Repeat until convergence

Slide credit: Steve Seitz
EM Details

- **E-step**
 - Compute probability that point \(x \) is in blob \(b \), given current guess of \(\theta \)

 \[
 P(b|x, \mu_b, V_b) = \frac{\alpha_b P(x|\mu_b, V_b)}{\sum_{i=1}^{K} \alpha_i P(x|\mu_i, V_i)}
 \]

- **M-step**
 - Compute probability that blob \(b \) is selected

 \[
 \alpha_b^{\text{new}} = \frac{1}{N} \sum_{i=1}^{N} P(b|x_i, \mu_b, V_b) \quad (N \text{ data points})
 \]
 - Mean of blob \(b \)

 \[
 \mu_b^{\text{new}} = \frac{\sum_{i=1}^{N} x_i P(b|x_i, \mu_b, V_b)}{\sum_{i=1}^{N} P(b|x_i, \mu_b, V_b)}
 \]
 - Covariance of blob \(b \)

 \[
 V_b^{\text{new}} = \frac{\sum_{i=1}^{N} (x_i - \mu_b^{\text{new}})(x_i - \mu_b^{\text{new}})^T P(b|x_i, \mu_b, V_b)}{\sum_{i=1}^{N} P(b|x_i, \mu_b, V_b)}
 \]

Slide credit: Steve Seitz
Applications of EM

• Turns out this is useful for all sorts of problems
 ➢ Any clustering problem
 ➢ Any model estimation problem
 ➢ Missing data problems
 ➢ Finding outliers
 ➢ Segmentation problems
 - Segmentation based on color
 - Segmentation based on motion
 - Foreground/background separation
 ➢ ...

• EM demo
Segmentation with EM

Original image

EM segmentation results

k=2 k=3 k=4 k=5

Image source: Serge Belongie
Summary: Mixtures of Gaussians, EM

- **Pros**
 - Probabilistic interpretation
 - Soft assignments between data points and clusters
 - Generative model, can predict novel data points
 - Relatively compact storage

- **Cons**
 - Local minima
 - k-means is NP-hard even with k=2
 - Initialization
 - Often a good idea to start with some k-means iterations.
 - Need to know number of components
 - Solutions: model selection (AIC, BIC), Dirichlet process mixture
 - Need to choose generative model
 - Numerical problems are often a nuisance
Topics of This Lecture

- Segmentation and grouping
 - Gestalt principles
 - Image segmentation

- Segmentation as clustering
 - k-Means
 - Feature spaces

- Probabilistic clustering
 - Mixture of Gaussians, EM

- Model-free clustering
 - Mean-Shift clustering
Finding Modes in a Histogram

- How many modes are there?
 - Mode = local maximum of the density of a given distribution
 - Easy to see, hard to compute

Slide credit: Steve Seitz
Mean-Shift Segmentation

- An advanced and versatile technique for clustering-based segmentation

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Slide credit: Svetlana Lazebnik
Mean-Shift Algorithm

- **Iterative Mode Search**
 1. Initialize random seed, and window W
 2. Calculate center of gravity (the “mean”) of W: $\sum_{x \in W} xH(x)$
 3. Shift the search window to the mean
 4. Repeat Step 2 until convergence

Slide credit: Steve Seitz

B. Leibe
Mean-Shift
Mean-Shift
Mean-Shift

Region of interest
Center of mass
Mean Shift vector

Slide by Y. Ukrainitz & B. Sarel
Mean-Shift
Mean-Shift

Region of interest
Center of mass
Mean Shift vector

Slide by Y. Ukrainitz & B. Sarel
Mean-Shift

Region of interest

Center of mass

Mean Shift vector

Slide by Y. Ukrainitz & B. Sarel
Mean-Shift
Real Modality Analysis

Tessellate the space with windows Run the procedure in parallel
Real Modality Analysis

The blue data points were traversed by the windows towards the mode.

Slide by Y. Ukrainitz & B. Sarel
Mean-Shift Clustering

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode
Mean-Shift Clustering/Segmentation

- Find features (color, gradients, texture, etc)
- Initialize windows at individual pixel locations
- Perform mean shift for each window until convergence
- Merge windows that end up near the same “peak” or mode
Mean-Shift Segmentation Results

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Slide credit: Svetlana Lazebnik
More Results
More Results

Slide credit: Svetlana Lazebnik
Problem: Computational Complexity

- Need to shift many windows...
- Many computations will be redundant.

B. Leibe
1. Assign all points within radius r of end point to the mode.

B. Leibe
2. Assign all points within radius r/c of the search path to the mode.

B. Leibe
Summary Mean-Shift

- **Pros**
 - General, application-independent tool
 - Model-free, does not assume any prior shape (spherical, elliptical, etc.) on data clusters
 - Just a single parameter (window size h)
 - h has a physical meaning (unlike k-means)
 - Finds variable number of modes
 - Robust to outliers

- **Cons**
 - Output depends on window size
 - Window size (bandwidth) selection is not trivial
 - Computationally (relatively) expensive (~2s/image)
 - Does not scale well with dimension of feature space
Segmentation: Caveats

• We’ve looked at *bottom-up* ways to segment an image into regions, yet finding meaningful segments is intertwined with the recognition problem.

• Often want to avoid making hard decisions too soon

• Difficult to evaluate; when is a segmentation successful?
Generic Clustering

- We have focused on ways to group pixels into image segments based on their appearance
 - Find groups; “quantize” feature space

- In general, we can use clustering techniques to find groups of similar “tokens”, provided we know how to compare the tokens.
 - E.g., segment an image into the types of motions present
 - E.g., segment a video into the types of scenes (shots) present
References and Further Reading

- Background information on segmentation by clustering and on Normalized Cuts can be found in Chapter 14 of

- More on the EM algorithm can be found in Chapter 16.1.2.

- Read Max Wertheimer’s classic thoughts on Gestalt
 - http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm

- Try the k-means and EM demos at
 - http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html