Computer Vision - Lecture 8

Recognition with Global Representations

22.11.2011

Bastian Leibe
RWTH Aachen
http://www.mmp.rwth-aachen.de

leibe@umic.rwth-aachen.de
Course Outline

• Image Processing Basics

• Segmentation
 - Segmentation and Grouping
 - Graph-Theoretic Segmentation

• Recognition
 - Global Representations
 - Subspace representations

• Local Features & Matching

• Object Categorization

• 3D Reconstruction

• Motion and Tracking
Recap: Image Segmentation

- Goal: identify groups of pixels that go together
Recap: Images as Graphs

- **Fully-connected graph**
 - Node (vertex) for every pixel
 - Link between *every* pair of pixels, \((p,q)\)
 - Affinity weight \(w_{pq}\) for each link (edge)
 - \(w_{pq}\) measures similarity
 - Similarity is *inversely proportional* to difference
 (in color and position...)

Slide credit: Steve Seitz
Recap: Normalized Cut (NCut)

- A minimum cut penalizes large segments
- This can be fixed by normalizing for size of segments
- The normalized cut cost is:

\[
N_{\text{cut}}(A, B) = \frac{\text{cut}(A, B)}{\text{assoc}(A, V)} + \frac{\text{cut}(A, B)}{\text{assoc}(B, V)}
\]

\[
\text{assoc}(A, V) = \text{sum of weights of all edges in V that touch A}
\]

\[
= \text{cut}(A, B) \left[\frac{1}{\sum_{p \in A} w_{p,q}} + \frac{1}{\sum_{q \in B} w_{p,q}} \right]
\]

- The exact solution is NP-hard but an approximation can be computed by solving a generalized eigenvalue problem.

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

Slide credit: Svetlana Lazebnik
Recap: NCuts: Overall Procedure

1. Construct a weighted graph $G=(V,E)$ from an image.
2. Connect each pair of pixels, and assign graph edge weights,
 \[W(i, j) = \text{Prob. that } i \text{ and } j \text{ belong to the same region.} \]
3. Solve \((D - W)y = \lambda Dy\) for the smallest few eigenvectors. This yields a continuous solution.
4. Threshold eigenvectors to get a discrete cut
 - This is where the approximation is made (we’re not solving NP).
5. Recursively subdivide if NCut value is below a pre-specified value.

NCuts Matlab code available at
http://www.cis.upenn.edu/~jshi/software/
Recap: Markov Random Fields

\[
\Phi(x_i, y_i) \quad \Psi(x_i, x_j)
\]

Image patches
Scene patches
Image
Scene

Slide credit: William Freeman
Recap: Energy Formulation

- Joint probability
 \[P(x, y) = \prod_i \Phi(x_i, y_i) \prod_{i,j} \Psi(x_i, x_j) \]

- Maximizing the joint probability is the same as minimizing the log
 \[\log P(x, y) = \sum_i \log \Phi(x_i, y_i) + \sum_{i,j} \log \Psi(x_i, x_j) \]
 \[E(x, y) = \sum_i \phi(x_i, y_i) + \sum_{i,j} \psi(x_i, x_j) \]

- This is similar to free-energy problems in statistical mechanics (spin glass theory). We therefore draw the analogy and call \(E \) an energy function.

- \(\phi \) and \(\psi \) are called potentials.
Recap: Energy Formulation

• Energy function

\[E(x, y) = \sum \varphi(x_i, y_i) + \sum \psi(x_i, x_j) \]

Single-node potentials \hspace{1cm} Pairwise potentials

• Single-node potentials \(\varphi \)
 - Encode local information about the given pixel/patch
 - How likely is a pixel/patch to belong to a certain class (e.g. foreground/background)?

• Pairwise potentials \(\psi \)
 - Encode neighborhood information
 - How different is a pixel/patch’s label from that of its neighbor? (e.g. based on intensity/color/texture difference, edges)
Recap: Graph Cuts Energy Minimization

Regional bias example

Suppose I^s and I^t are given “expected” intensities of object and background

$$D_p(s) \propto \exp\left(-\|I_p - I^s\|^2 / 2\sigma^2\right)$$

$$D_p(t) \propto \exp\left(-\|I_p - I^t\|^2 / 2\sigma^2\right)$$

[Boykov & Jolly, ICCV’01]
Recap: Graph Cuts Energy Minimization

“expected” intensities of object and background I^s and I^t can be re-estimated

$D_p(s) \propto \exp\left(-||I_p - I^s||^2 / 2\sigma^2\right)$

$D_p(t) \propto \exp\left(-||I_p - I^t||^2 / 2\sigma^2\right)$

EM-style optimization

Slide credit: Yuri Boykov
Topics of This Lecture

- **Object Recognition**
 - Appearance-based recognition
 - Global representations
 - Color histograms

- **Recognition using histograms**
 - Histogram comparison measures
 - Histogram backprojection
 - Multidimensional histograms

- **Probabilistic Interpretation**
 - Probability density estimation
 - Recognition from local samples
 - Extension: recognition of multiple objects in an image
 - Extension: colored derivatives

B. Leibe
Object Recognition
Challenges

- **Viewpoint changes**
 - Translation
 - Image-plane rotation
 - Scale changes
 - Out-of-plane rotation

- **Illumination**
- **Noise**
- **Clutter**
- **Occlusion**
Appearance-Based Recognition

- Basic assumption
 - Objects can be represented by a set of images ("appearances").
 - For recognition, it is sufficient to just compare the 2D appearances.
 - No 3D model is needed.

⇒ Fundamental paradigm shift in the 90’s
Global Representation

• Idea
 ➢ Represent each object (view) by a global descriptor.
 ➢ For recognizing objects, just match the descriptors.
 ➢ Some modes of variation are built into the descriptor, the others have to be incorporated in the training data.
 - e.g. a descriptor can be made invariant to image-plane rotations.
 - Other variations:
 Viewpoint changes
 – Translation
 – Scale changes
 – Out-of-plane rotation
 Illumination
 – Noise
 – Clutter
 – Occlusion
Color: Use for Recognition

• Color:
 - Color stays constant under geometric transformations
 - Local feature
 - Color is defined for each pixel
 - Robust to partial occlusion

• Idea
 - Directly use object colors for recognition
 - Better: use statistics of object colors
Color Histograms

- Color statistics
 - Here: RGB as an example
 - Given: tristimulus R,G,B for each pixel
 - Compute 3D histogram
 - \(H(R,G,B) = \#(\text{pixels with color } (R,G,B)) \)
Color Normalization

• One component of the 3D color space is intensity
 - If a color vector is multiplied by a scalar, the intensity changes, but not the color itself.
 - This means colors can be normalized by the intensity.
 - Intensity is given by $I = R + G + B$:
 - „Chromatic representation“

\[
\begin{align*}
 r &= \frac{R}{R + G + B} \\
 g &= \frac{G}{R + G + B} \\
 b &= \frac{B}{R + G + B}
\end{align*}
\]
Color Normalization

- **Observation:**
 - Since \(r + g + b = 1 \), only 2 parameters are necessary
 - E.g. one can use \(r \) and \(g \)
 - and obtains \(b = 1 - r - g \)
Color Histograms

- Robust representation

[Swain & Ballard, 1991]
Color Histograms

- Use for recognition
 - Works surprisingly well
 - In the first paper (1991), 66 objects could be recognized almost without errors

[Swain & Ballard, 1991]
Topics of This Lecture

- **Object Recognition**
 - Appearance-based recognition
 - Global representations
 - Color histograms

- **Recognition using histograms**
 - Histogram comparison measures
 - Histogram backprojection
 - Multidimensional histograms

- **Probabilistic Interpretation**
 - Probability density estimation
 - Recognition from local samples
 - Extension: recognition of multiple objects in an image
 - Extension: colored derivatives
Recognition Using Histograms

- Histogram comparison
Recognition Using Histograms

- With multiple training views
What Is a Good Comparison Measure?

• How to define matching cost?

Good!

Bad!

Slide credit: Pete Barnum
Comparison Measures: Euclidean Distance

• Definition
 - Euclidean Distance (= L_2 norm)

 \[
 d(Q, V) = \sum_i (q_i - v_i)^2
 \]

• Motivation
 - Focuses on the differences between the histograms.
 - Interpretation: distance in feature space.
 - Range: $[0, \infty]$
 - All cells are weighted equally.
 - Not very robust to outliers!
Comparison Measures: Mahalanobis Distance

- **Definition**
 - Mahalanobis distance (Quadratic Form)

 \[
 d(Q, V) = (Q - V)^\top \Sigma^{-1} (Q - V) = \sum_{i} \sum_{j} \frac{(q_i - v_i)(q_j - v_j)}{\sigma_{ij}}
 \]

- **Motivation**
 - Interpretation:
 - Weighted distance in feature space.
 - Compensate for correlated data.
 - Range: \([0, \infty]\)
 - More robust to certain outliers.
Comparison Measures: Chi-Square

• **Definition**
 - Chi-square
 \[\chi^2(Q, V) = \sum_i \frac{(q_i - v_i)^2}{q_i + v_i} \]

• **Motivation**
 - **Statistical background:**
 - Test if two distributions are different
 - Possible to compute a significance score
 - **Range:** \([0, \infty]\)
 - Cells are not weighted equally!
 - More robust to outliers than Euclidean distance.
 - If the histograms contain enough observations...
Comp. Measures: Bhattacharyya Distance

• Definition
 - Bhattacharyya coefficient

 \[BC(Q,V) = \sum_i \sqrt{q_i v_i} \]
 - Common distance measure:

 \[d_{BC}(Q,V) = \sqrt{1 - BC(Q,V)} \]

• Motivation
 - Statistical background
 - \(BC \) measures the statistical separability between two distributions.
 - Range: \([0, \infty]\)
 - (Reason for \(d_{BC} \): triangle inequality)
Comparison Measures: Kullback-Leibler

• Definition
 - KL-divergence

\[
KL(Q, V) = \sum_i q_i \log \frac{q_i}{v_i}
\]

• Motivation
 - Information-theoretic background:
 - Measures the expected difference (#bits) required to code samples from distribution \(Q\) when using a code based on \(Q\) vs. based on \(V\).
 - Also called: information gain, relative entropy
 - Not symmetric!
 - Symmetric version: Jeffreys divergence

\[
JD(Q, V) = KL(Q, V) + KL(V, Q)
\]
Comp. Measures: Histogram Intersection

- **Definition**
 - Intersection
 \[\cap(Q, V) = \sum_i \min(q_i, v_i) \]

- **Motivation**
 - Measures the common part of both histograms
 - Range: [0, 1]
 - For unnormalized histograms, use the following formula
 \[\cap(Q, V) = \frac{1}{2} \left(\frac{\sum_i \min(q_i, v_i)}{\sum_i q_i} + \frac{\sum_i \min(q_i, v_i)}{\sum_i v_i} \right) \]
Comp. Measures: Earth Movers Distance

- Motivation: Moving Earth
Comp. Measures: Earth Movers Distance

- Motivation: Moving Earth
Comp. Measures: Earth Movers Distance

- Motivation: Moving Earth

(distance moved) * (amount moved)
Comp. Measures: Earth Movers Distance

- Motivation: Moving Earth
 - Linear Programming Problem

\[
\sum \text{(distance moved)} \times \text{(amount moved)}
\]

Slide adapted from Pete Barnum
Comp. Measures: Earth Movers Distance

- **Motivation: Moving Earth**
 - Linear Programming Problem

\[
\sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} \text{ * (amount moved)}
\]

All movements

Slide adapted from Pete Barnum
Comp. Measures: Earth Movers Distance

- **Motivation: Moving Earth**
 - Linear Programming Problem

\[
\sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} f_{ij} = \text{WORK}
\]

All movements

\[\Rightarrow \text{What is the minimum amount of work to convert } Q \text{ into } V? \]

Slide adapted from Pete Barnum
EMD Computation

- Constraints

1. Move “earth” only from Q to V

m clusters

n clusters

Q'

V'

$f_{ij} \geq 0$

Slide credit: Pete Barnum
EMD Computation

- Constraints

2. Cannot send more “earth” than there is

\[\sum_{j=1}^{n} f_{ij} \leq w_{q_i} \]
EMD Computation

- Constraints

3. \(V \) cannot receive more than it can hold

\[
\sum_{i=1}^{m} f_{ij} \leq w_{vj}
\]

Slide credit: Pete Barnum
EMD Computation

- Constraints

4. As much “earth” as possible must be moved.
 - Either Q must be completely spent or V must be completely filled.

\[\sum_{i=1}^{m} \sum_{j=1}^{n} f_{ij} = \min \left(\sum_{i=1}^{m} w_{qi}, \sum_{j=1}^{n} w_{vj} \right) \]
Comp. Measures: Earth Movers Distance

- **Motivation: Moving Earth**
 - Linear Programming Problem
 - Distance measure
 \[D_{EMD} (Q,V) = \frac{\sum_{i,j} d_{ij} f_{ij}}{\sum_{i,j} f_{ij}} \]

- **Advantages**
 - Nearness measure without quantization
 - Partial matching
 - A true metric

- **Disadvantage: expensive computation**
 - Efficient algorithms available for 1D
 - Approximations for higher dimensions...

B. Leibe
Summary: Comparison Measures

- Vector space interpretation
 - Euclidean distance
 - Mahalanobis distance

- Statistical motivation
 - Chi-square
 - Bhattacharyya

- Information-theoretic motivation
 - Kullback-Leibler divergence, Jeffreys divergence

- Histogram motivation
 - Histogram intersection

- Ground distance
 - Earth Movers Distance (EMD)
Comparison for Image Retrieval

<table>
<thead>
<tr>
<th>Query</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2 distance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Query</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeffrey divergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Query</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>χ^2 statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Query</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earth Movers Distance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Histogram Comparison

- Which measure is best?
 - Depends on the application...
 - Euclidean distance is often not robust enough.
 - Both Intersection and χ^2 give good performance for histograms.
 - Intersection is a bit more robust.
 - χ^2 is a bit more discriminative.
 - KL/Jeffrey works sometimes very well, but is expensive.
 - EMD is most powerful, but also quite expensive
 - There exist many other measures not mentioned here
 - e.g. statistical tests: Kolmogorov-Smirnov
 Cramer/Von-Mises
 - ...

B. Leibe
Summary: Recognition Using Histograms

- Simple algorithm
 1. Build a set of histograms \(H = \{ h_i \} \) for each known object
 - More exactly, for each view of each object
 2. Build a histogram \(h_t \) for the test image.
 3. Compare \(h_t \) to each \(h_i \in H \)
 - Using a suitable comparison measure
 4. Select the object with the best matching score
 - Or reject the test image if no object is similar enough.

“Nearest-Neighbor” strategy
Topics of This Lecture

- **Object Recognition**
 - Appearance-based recognition
 - Global representations
 - Color histograms

- **Recognition using histograms**
 - Histogram comparison measures
 - Histogram backprojection
 - Multidimensional histograms

- **Probabilistic Interpretation**
 - Probability density estimation
 - Recognition from local samples
 - Extension: recognition of multiple objects in an image
 - Extension: colored derivatives
Localization by Histogram Backprojection

• „Where in the image are the colors we‘re looking for?“
 ➢ Idea: Normalized histogram represents probability distribution

\[p(x | \text{obj}) \]

• Histogram backprojection
 ➢ For each pixel \(x \), compute the likelihood that this pixel color was caused by the object: \(p(x | \text{obj}) \).
 ➢ This value is projected back into the image (i.e. the image values are replaced by the corresponding histogram values).
Color-Based Skin Detection

- Used 18,696 images to build a general color model.
- Histogram representation

Localization by Histogram Backprojection

- „Where in the image are the colors we‘re looking for?“
 - Query: object with histogram M
 - Given: image with histogram I

- Compute the „ratio histogram“: $R_i = \min \left(\frac{M_i}{I_i}, 1 \right)$
 - R reveals how important an object color is, relative to the current image.
 - Color is frequent on the object \Rightarrow large M_i
 - Color is frequent in the image \Rightarrow large I_i
 - This value is projected back into the image (i.e. the image values are replaced by the values of R that they index).
 - The result image is convolved with a circular mask the size of the target object.
 - Peaks in the convolved image indicate detected objects.
Object Localization Results

- Example result after backprojection
 - Looking for blue pullover...

[Swain & Ballard, 1991]
Discussion: Color Histograms

• **Pros**
 - Invariant to object translation & rotation
 - Slowly changing for out-of-plane rotation
 - No perfect segmentation necessary
 - Histograms change gradually when part of the object is occluded
 - Possible to recognize deformable objects
 - e.g. pullover

• **Cons**
 - Pixel colors change with the illumination
 („color constancy problem“)
 - Intensity
 - Spectral composition (illumination color)
 - Not all objects can be identified by their color distribution.
Topics of This Lecture

• Object Recognition
 ➢ Appearance-based recognition
 ➢ Global representations
 ➢ Color histograms

• Recognition using histograms
 ➢ Histogram comparison measures
 ➢ Histogram backprojection
 ➢ Multidimensional histograms

• Probabilistic Interpretation
 ➢ Probability density estimation
 ➢ Recognition from local samples
 ➢ Extension: recognition of multiple objects in an image
 ➢ Extension: colored derivatives
Generalization of the Idea

- Histograms of derivatives
 - D_x
 - D_y
 - D_{xx}
 - D_{xy}
 - D_{yy}
General Filter Response Histograms

- Any local descriptor (e.g. filter, filter combination) can be used to build a histogram.

- Examples:
 - Gradient magnitude
 \[\text{Mag} = \sqrt{D_x^2 + D_y^2} \]
 - Gradient direction
 \[\text{Dir} = \arctan \frac{D_y}{D_x} \]
 - Laplacian
 \[\text{Lap} = D_{xx} + D_{yy} \]
Multidimensional Representations

- Combination of several descriptors
 - Each descriptor is applied to the whole image.
 - Corresponding pixel values are combined into one feature vector.
 - Feature vectors are collected in multidimensional histogram.
Multidimensional Histograms

- Examples
Multidimensional Representations

- Useful simple combinations
 - $D_x - D_y$
 - Rotation-variant
 - Descriptor changes when image is rotated.
 - Useful for recognizing oriented structures (e.g. vertical lines)
 - Mag-Lap
 - Rotation-invariant
 - Descriptor does not change when image is rotated.
 - Can be used to recognize rotated objects.
 - Less discriminant than rotation-variant descriptor.

B. Leibe
Generalization: Filter Banks

- What filters to put in the bank?
 - Typically we want a combination of scales and orientations, different types of patterns.

Matlab code available for these examples:
http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
Example Application of a Filter Bank

Filter bank of 8 filters

Input image

8 response images: magnitude of filtered outputs, per filter

Slide credit: Kristen Grauman

B. Leibe
Recall: These looked very similar in terms of their color distributions (when our features were R-G-B)

But how would their texture distributions compare?
Special Case: Multiscale Representations

- Combination of several scales
 - Descriptors are computed at different scales.
 - Each scale captures different information about the object.
 - Size of the support region grows with increasing σ.
 - Feature vectors capture both local details and larger-scale structures.
Summary: Multidimensional Representations

• **Pros**
 - Work very well for recognition.
 - Usually, simple combinations are sufficient (e.g. $D_x - D_y$, Mag-Lap)
 - But multiple scales are very important!
 - Generalization: filter banks

• **Cons**
 - High-dimensional histograms \Rightarrow lots of storage space
 - Global representation \Rightarrow not robust to occlusion
Topics of This Lecture

- **Object Recognition**
 - Appearance-based recognition
 - Global representations
 - Color histograms

- **Recognition using histograms**
 - Histogram comparison measures
 - Histogram backprojection
 - Multidimensional histograms

- **Probabilistic Interpretation**
 - Probability density estimation
 - Recognition from local samples
 - Extension: recognition of multiple objects in an image
 - Extension: colored derivatives
From Global To Local...

- Up to now, we have compared entire histograms.

⇒⇒⇒⇒

⇒⇒⇒⇒

⇒ Problematic if objects can be partially occluded.

- Now:
 - Look at local measurements only.
 - What can we tell if we only see a single pixel of the object?
Recall: Working with Probabilities

- Random Variables:
 - A, B

- Probabilities:
 - $\Pr(A), \Pr(B)$

- Joint probability
 - $\Pr(A, B)$

- Conditional probability
 - $\Pr(A \mid B)$
Recall: Manipulation Rules

• Factorization of the joint

\[\Pr(A, B) = \Pr(A | B) \Pr(B) = \Pr(B | A) \Pr(A) \]

• Marginalization

\[\Pr(A) = \sum_i \Pr(A, b_i) = \sum_i \Pr(A | b_i) \Pr(b_i) \]
\[= \sum_i \Pr(b_i | A) \Pr(A) \]

• Bayes theorem

\[\Pr(A | B) = \frac{\Pr(B | A) \Pr(A)}{\Pr(B)} \]
Probabilistic Derivation

- Probability of object o_n given measurement m_k

\[
p(o_n | m_k) = \frac{p(m_k | o_n)p(o_n)}{p(m_k)}
\]

- Recall: Bayes theorem

\[
Pr(A | B) = \frac{Pr(B | A) Pr(A)}{Pr(B)}
\]
Probabilistic Derivation

- Probability of object o_n given measurement m_k

\[
p(o_n | m_k) = \frac{p(m_k | o_n) p(o_n)}{p(m_k)} = \frac{p(m_k | o_n) p(o_n)}{\sum_i p(m_k | o_i) p(o_i)}
\]

- with
 - $p(o_n)$ the *prior* probability of object o_n,
 - $p(m_k)$ the *prior* probability of measurement m_k,
 - $p(m_k | o_n)$ the *likelihood* of the data given the model, i.e. the probability of the measurement m_k under the model o_n.

B. Leibe
Probabilistic Derivation

• Main difficulty
 ➢ How to obtain the likelihood $p(m_k|o_n)$?

• Idea:
 ➢ A normalized histogram is a probability density estimate!
 ➢ Each cell describes the frequency at which the corresponding value was observed in the image.
 ⇒ We can read off $p(m_k|o_n)$ directly from the histogram.
Probabilistic Recognition

- Assumption: all objects equally probable ("naïve Bayes")

\[p(o_i) = \frac{1}{N} \]

\[p(o_n | m_k) = \frac{p(m_k | o_n)p(o_n)}{\sum_i p(m_k | o_i)p(o_i)} \]

\[= \frac{1}{N} p(m_k | o_n) \]

\[= \frac{1}{N} \sum_i p(m_k | o_i) \]

value of hist. cell

sum over all objects
Probabilistic Recognition

- Joint probability for two measurements

\[
p(o_n | m_k \land m_j) = \frac{p(m_k \land m_j | o_n) p(o_n)}{\sum_i p(m_k \land m_j | o_i) p(o_i)}
\]

- Assumption: \(m_k \) and \(m_j \) are independent
 - The individual probabilities can be multiplied

\[
p(o_n | m_k \land m_j) = \frac{p(m_k | o_n) p(m_j | o_n) p(o_n)}{\sum_i p(m_k | o_i) p(m_j | o_i) p(o_i)}
\]
Probabilistic Recognition

- Joint probability for K independent measurements

$$p(o_n \mid \bigwedge_k m_k) = \frac{p(\bigwedge_k m_k \mid o_n)p(o_n)}{\sum_i p(\bigwedge_k m_k \mid o_i)p(o_i)} = \frac{\prod_k p(m_k \mid o_n)p(o_n)}{\sum_i \prod_k p(m_k \mid o_i)p(o_i)}$$

- Assumption: all objects are equally probable

$$\Rightarrow \quad p(o_i) = \frac{1}{N}$$

$$\Rightarrow \quad p(o_n \mid \bigwedge_k m_k) = \frac{\prod_k p(m_k \mid o_n)}{\sum_i \prod_k p(m_k \mid o_i)}$$
Bayesian Recognition Algorithm

1. Build up histograms \(p(m_k|o_n) \) for each training object.
2. Sample the test image to obtain \(m_k, \ k \in K \).
 - Only small number of local samples necessary.
3. Compute the probabilities for each training object.
 \[
p(o_n|Image) = \frac{\prod_k p(m_k|o_n)p(o_n)}{\sum_i \prod_k p(m_k|o_i)p(o_i)}
\]
4. Select the object with the highest probability
 - Or reject the test image if no object accumulates sufficient probability.
Bayesian Recognition Algorithm

- Advantage
 - Can already generate hypotheses from a small number of measurements
 - Visible object portion of 10-20% may already be enough!
Practical Issues

- Most expensive step
 3. Compute the probabilities for each training object.

\[
p(o_n | Image) = \frac{\prod_k p(m_k | o_n) p(o_n)}{\sum_i \prod_k p(m_k | o_i) p(o_i)}
\]

- Notes
 - The \textit{numerator} computes a score indicating how probable each object \(o_n\) in the database is.
 - \(\Rightarrow\) This score can be used to compare the different object hypotheses.
Practical Issues

- **Most expensive step**
 3. Compute the probabilities for each training object.

\[
p(o_n | Image) = \frac{\prod_k p(m_k | o_n) p(o_n)}{\sum_i \prod_k p(m_k | o_i) p(o_i)}
\]

- **Notes**
 - The *numerator* computes a score indicating how probable each object \(o_n\) in the database is.
 \[\Rightarrow\] This score can be used to compare the different object hypotheses.

 - The *denominator* is the same for all objects in the database.
 \[\Rightarrow\] This term is important in order to decide if we have accumulated sufficient evidence to make a decision.
Results: Probabilistic (Bayesian) Recognition

- **Test database**
 - 103 test objects
 - 1327 test images total
 - 607 images with scale changes and rotations for 83 objects
 - 720 images with different viewpoints for 20 objects
 - Use 6D descriptor $D_x - D_y$ with $\sigma_i = \{1, 2, 4\}$
 - explicitly trained for scale changes & rotations

[Schiele & Crowley, 2000]
Experimental Evaluation

- Recognition under Partial Occlusion
 - Compare intersection, χ^2, and probabilistic recognition

- Results
 - Intersection more robust to occlusion than χ^2
 - Probabilistic recognition most robust
 - 62% visibility \Rightarrow 100% recognition
 - 33% visibility \Rightarrow 99% recognition
 - 13% visibility \Rightarrow >90% recognition

[Schiele & Crowley, 2000]

B. Leibe
Topics of This Lecture

- **Object Recognition**
 - Appearance-based recognition
 - Global representations
 - Color histograms

- **Recognition using histograms**
 - Histogram comparison measures
 - Histogram backprojection
 - Multidimensional histograms

- **Probabilistic Interpretation**
 - Probability density estimation
 - Recognition from local samples
 - **Extension**: recognition of multiple objects in an image
 - **Extension**: colored derivatives

B. Leibe
Extension: Recognition of Multiple Objects

- **Comparison with Hash table**

 \[
 \begin{align*}
 m_i & \rightarrow \text{vote}(o_n|m_i) \\
 m_j & \rightarrow \text{vote}(o_n|m_j) \\
 \vdots
 \end{align*}
 \]

 \[
 \text{vote}(o_n|\text{Image}) = \sum_i \text{vote}(o_n|m_i)
 \]

- **Probabilistic Recognition**

 \[
 \begin{align*}
 m_i & \rightarrow p(o_n|m_i) \\
 m_j & \rightarrow p(o_n|m_j) \\
 \vdots
 \end{align*}
 \]

 \[
 p(o_n|\text{Image}) = \frac{\prod_k p(m_k|o_n)p(o_n)}{\sum_i \prod_k p(m_k|o_i)p(o_i)}
 \]
Recognition of Multiple Objects

- **Local Appearance Hashing**
 - Combination of the probabilistic recognition with a hash table
 - Only relatively small object region is needed for recognition.
 - Divide image into set of (overlapping) regions.
 - Each region votes for a single object.
 - Region votes are combined to vote for the presence of object o_n.
Recognition Results

Test image 1

Test image 2

First Match

First Match

Second Match

Second Match

Third Match

Third Match

B. Leibe

[Schiele & Crowley, 2000]
Recognition Results

Test image 3 First Match Second Match Third Match

Test image 4 First Match Second Match Third Match Fourth Match

B. Leibe

[Schiele & Crowley, 2000]
Why Does It Work?

- **Histogram Representation**
 - Contains no structural description.
 - Many different objects should result in the same histograms.
 ⇒ Why can the approach still distinguish so many objects?

- **Explanation**
 - Support regions of neighboring descriptors overlap.
 - Neighborhood relations are captured implicitly.

B. Leibe
Topics of This Lecture

- **Object Recognition**
 - Appearance-based recognition
 - Global representations
 - Color histograms

- **Recognition using histograms**
 - Histogram comparison measures
 - Histogram backprojection
 - Multidimensional histograms

- **Probabilistic Interpretation**
 - Probability density estimation
 - Recognition from local samples
 - Extension: recognition of multiple objects in an image
 - Extension: colored derivatives
Extension: Colored Derivatives

- **YC₁C₂ color space**
 \[
 \begin{pmatrix}
 Y \\
 C_1 \\
 C_2
 \end{pmatrix} = \begin{pmatrix}
 g_r & g_g & g_b \\
 \frac{3g_g}{2} & -\frac{3g_r}{2} & 0 \\
 \frac{g_b g_r}{g_r^2 + g_g^2} & \frac{g_b g_g}{g_r^2 + g_g^2} & -1
 \end{pmatrix} \begin{pmatrix}
 R \\
 G \\
 B
 \end{pmatrix}
 \]

- **Color-opponent space**
 - Inspired by models of the human visual system
 - \(Y \equiv \) intensity
 - \(C_1 \equiv \) red-green
 - \(C_2 \equiv \) blue-yellow

[Hall & Crowley, 2000]
Extension: Colored Derivatives

- **Generalization**: derivatives along
 - Y axis \rightarrow intensity differences
 - C_1 axis \rightarrow red-green differences
 - C_2 axis \rightarrow blue-yellow differences

- **Feature vector is rotated such that** $D_y = 0$
 - Rotation-invariant descriptor

[Hall & Crowley, 2000]
Application: Brand Identification in Video
Application: Brand Identification in Video

<table>
<thead>
<tr>
<th>Brand</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOSTER'S</td>
<td>0.76</td>
</tr>
<tr>
<td>HELIX</td>
<td>0.01</td>
</tr>
<tr>
<td>Krombacher</td>
<td>0.51</td>
</tr>
<tr>
<td>FABER</td>
<td>0.14</td>
</tr>
<tr>
<td>RWE powerline</td>
<td>0.29</td>
</tr>
<tr>
<td>QANTAS</td>
<td>0.47</td>
</tr>
</tbody>
</table>

[Hall, Pellison, Riff, Crowley, 2004]
Application: Brand Identification in Video

- **Aral**: 2%
- **Alles super.**: 3%
- **Fosters**: 11%
- **Helix**: 0%
- **Marlboro**: 33%

false detection

[Hall, Pellison, Riff, Crowley, 2004]
Summary

- **Appearance-based Object Recognition**
 - Using global representations

- **Histograms**
 - Color histograms
 - Histogram comparison measures
 - Multidimensional histograms

- **Probabilistic Recognition**
 - Histograms as probability density estimates
 - Recognition from local measurements
 - Recognition of multiple objects in an image
You’re Now Ready for First Applications...

- All the basic components are there
 - Binary processing
 - Filter operators
 - Edges, lines, circles
 - Color
 - Simple global recognition

- So, let’s have some fun!
You’re Now Ready for First Applications...

- Line detection
- Histogram based recognition
- Circle detection
- Binary Segmentation
- Skin color detection
- Moment descriptors

Image Source: http://www.flickr.com/photos/angelsk/2806412807/
References and Further Reading

- Background information on histogram-based object recognition can be found in the following paper

- Matlab filterbank code available at
 - http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html