Computer Vision - Lecture 13
Recognition with Local Features
15.12.2011

Bastian Leibe
RWTH Aachen
http://www.mmp.rwth-aachen.de/
leibe@umic.rwth-aachen.de

You Wanted A Script...
• We’ve created a script... for the part of the lecture on object recognition & categorization
 K. Grauman, B. Leibe
 Visual Object Recognition
 Morgan & Claypool publishers, 2011

• Chapter 3: Local Feature Extraction (Last 2 lectures)
• Chapter 4: Matching (Today’s topic)
• Chapter 5: Geometric Verification (Today’s topic)
 - Available on the L2P -

Course Outline
• Image Processing Basics
• Segmentation & Grouping
• Object Recognition
• Object Categorization I
 Sliding Window based Object Detection
• Local Features & Matching
 Local Features - Detection and Description
 Recognition with Local Features
 Indexing & Visual Vocabularies
• Object Categorization II
• 3D Reconstruction
• Motion and Tracking

Recap: Local Feature Matching Outline
1. Find a set of distinctive keypoints
2. Define a region around each keypoint
3. Extract and normalize the region content
4. Compute a local descriptor from the normalized region
5. Match local descriptors

Recap: Automatic Scale Selection
• Function responses for increasing scale (scale signature)

Recap: Laplacian-of-Gaussian (LoG)
• Interest points:
 Local maxima in scale space of Laplacian-of-Gaussian
 \(\Rightarrow \text{List of } (x, y, \sigma) \)
Recap: LoG Detector Responses

Recap: Key point localization with DoG
- Efficient implementation
 - Approximate LoG with a difference of Gaussians (DoG)
- Approach DoG Detector
 - Detect maxima of difference of Gaussian in scale space
 - Reject points with low contrast (threshold)
 - Eliminate edge responses

Recap: Harris-Laplace [Mikolajczyk '01]
1. Initialization: Multiscale Harris corner detection
2. Scale selection based on Laplacian
 (same procedure with Hessian ⇒ Hessian-Laplace)

Recap: SIFT Feature Descriptor
- Scale invariant Feature Transform
- Descriptor computation:
 - Divide patch into 4x4 sub-patches: 16 cells
 - Compute histogram of gradient orientations (8 reference angles)
 - For all pixels inside each sub-patch
 - Resulting descriptor: $4 \times 4 \times 8 = 128$ dimensions

Topics of This Lecture
- Recognition with Local Features
 - Matching local features
 - Finding consistent configurations
 - Alignment: linear transformations
 - Affine estimation
 - Homography estimation
- Dealing with Outliers
 - RANSAC
 - Generalized Hough Transform
- Indexing with Local Features
 - Inverted file index
 - Visual Words
 - Visual Vocabulary construction
 - tf-idf weighting

Recognition with Local Features
- Image content is transformed into local features that are invariant to translation, rotation, and scale
- Goal: Verify if they belong to a consistent configuration
Concepts: Warping vs. Alignment

- **Warping**: Given a source image and a transformation, what does the transformed output look like?
- **Alignment**: Given two images with corresponding features, what is the transformation between them?

Parametric (Global) Warping

Transformation T is a coordinate-changing machine:

$$T(p) = p'$$

- What does it mean that T is global?
 - It’s the same for any point p
 - It can be described by just a few numbers (parameters)
- Let’s represent T as a matrix:

$$p' = Mp,$$

where M is a $2 	imes 2$ matrix.

What Can be Represented by a 2x2 Matrix?

- **2D Scaling?**

 $$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- **2D Rotation around (0,0)?**

 $$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- **2D Shearing?**

 $$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & sh_y \\ sh_x & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Linear Transforms

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- Only linear 2D transformations can be represented with a 2x2 matrix.
- Linear transformations are combinations of...
 - Scale, Rotation, Shear, and Mirror

Homogeneous Coordinates

- **Q**: How can we represent translation as a 3x3 matrix using homogeneous coordinates?

 $$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Basic 2D Transformations

- Basic 2D transformations as 3x3 matrices

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 a & b & c \\
 d & e & f \\
 g & h & i
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

- **Rotation**
 \[
 \begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 \cos \theta & -\sin \theta & 0 \\
 \sin \theta & \cos \theta & 0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

- **Translation**
 \[
 \begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & t_x \\
 0 & 1 & t_y \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

- **Scaling**
 \[
 \begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 a & 0 & 0 \\
 0 & b & 0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

- **Shearing**
 \[
 \begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 1 & s_x & 0 \\
 s_y & 1 & 0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

2D Affine Transformations

- Affine transformations are combinations of...
 - Linear transformations, and
 - Translations

- **Parallel lines remain parallel**

Projective Transformations

\[
\begin{bmatrix}
 x' \\
 y' \\
 w
\end{bmatrix} =
\begin{bmatrix}
 a & b & c \\
 d & e & f \\
 g & h & i
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 w
\end{bmatrix}
\]

- **Projective transformations:**
 - Affine transformations, and
 - Projective warps

- **Parallel lines do not necessarily remain parallel**

Alignment Problem

- We have previously considered how to fit a model to image evidence
 - e.g., a line to edge points

- In alignment, we will fit the parameters of some transformation according to a set of matching feature pairs (“correspondences”).

Let’s Start with Affine Transformations

- Simple fitting procedure (linear least squares)
- Approximates viewpoint changes for roughly planar objects and roughly orthographic cameras
- Can be used to initialize fitting for more complex models

Fitting an Affine Transformation

- Affine model approximates perspective projection of planar objects
Fitting an Affine Transformation

- Assuming we know the correspondences, how do we get the transformation?

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} =
\begin{bmatrix}
 m_1 & m_2 \\
 m_3 & m_4
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix} +
\begin{bmatrix}
 t_1 \\
 t_2
\end{bmatrix}
\]

Recall: Least Squares Estimation

- Set of data points: \((X_1, X_2, X_3, X_4)\)
- Goal: a linear function to predict \(X'\) from \(X\):
 \[X' = AX + B\]
- We want to find \(a\) and \(b\).
- How many \((X, X')\) pairs do we need?
 \[X_1a + b = X_1'\]
 \[X_2a + b = X_2'\]
 \[
 \begin{bmatrix}
 X_1 & 1 & a & b \\
 X_2 & 1 & a & b
 \end{bmatrix}
 =
 \begin{bmatrix}
 X_1' \\
 X_2'
 \end{bmatrix}
 \]

Homography

- A projective transform is a mapping between any two perspective projections with the same center of projection.
 - i.e. two planes in 3D along the same sight ray
- Properties
 - Rectangle should map to arbitrary quadrilateral
 - Parallel lines aren’t but must preserve straight lines
- This is called a homography

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 h_1 & h_2 & h_3 & x \\
 h_4 & h_5 & h_6 & y \\
 h_7 & h_8 & h_9 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

Set scale factor to 1 ⇒ 8 parameters left.

Slide credit: Kristen Grauman

Slide adapted from Alexej Efros

B. Leibe
Fitting a Homography

- Estimating the transformation

\[x' = Hx \]

\[x'' = \frac{1}{x'} x' \]

\[y' = \frac{y}{x'} \]

\[y'' = \frac{y'}{x'} \]

- Image coordinates

- Homogenous coordinates

- Matrix notation

Slide credit: Krystian Mikolajczyk

B. Leibe

Computer Vision WS 11/12
Fitting a Homography

- Estimating the transformation

\[
\begin{pmatrix}
1 & a_1 & x_1 \\
1 & a_2 & x_2 \\
\vdots & \vdots & \vdots \\
1 & a_n & x_n \\
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
\vdots & \vdots & \vdots \\
0 & 0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n \\
\end{pmatrix}
= \begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n \\
\end{pmatrix}
\]

\[Ax = b\]

- Solution:
 - Null-space vector of \(A \)
 - Corresponds to smallest singular vector

\[A \sim UDV \]

Estimating the transformation

\[Ah = 0 \]

Minimizes least square error

Image Warping with Homographies

Uses: Analyzing Patterns and Shapes

- What is the shape of the b/w floor pattern?

Fitting a Homography

- Estimating the transformation

\[Ah = 0 \]

Solution:

- Null-space vector of \(A \)

\[A = U \Sigma V^T \]

Minimizes least square error

Analyzing Patterns and Shapes

From Martin Kemp: *The Science of Art* (manual reconstruction)
Topics of This Lecture

- Recognition with Local Features
 - Matching local features
 - Finding consistent configurations
 - Alignment: linear transformations
 - Affine estimation
 - Homography estimation
- Dealing with Outliers
 - RANSAC
 - Generalized Hough Transform
- Indexing with Local Features
 - Inverted file index
 - Visual Words
 - Visual Vocabulary construction
 - tf-idf weighting

Problem: Outliers

- Outliers can hurt the quality of our parameter estimates, e.g.,
 - An erroneous pair of matching points from two images
 - A feature point that is noise or doesn’t belong to the transformation we are fitting.

Example: Least-Squares Line Fitting

- Assuming all the points that belong to a particular line are known

Outliers Affect Least-Squares Fit

Strategy 1: RANSAC [Fischler81]

- RANdom SAmple Consensus
 - Approach: we want to avoid the impact of outliers, so let’s look for “inliers”, and use only those.
 - Intuition: if an outlier is chosen to compute the current fit, then the resulting line won’t have much support from rest of the points.
RANSAC

RANSAC loop:
1. Randomly select a seed group of points on which to base transformation estimate (e.g., a group of matches)
2. Compute transformation from seed group
3. Find inliers to this transformation
4. If the number of inliers is sufficiently large, recompute least-squares estimate of transformation on all of the inliers
 • Keep the transformation with the largest number of inliers

RANSAC Line Fitting Example

• Task: Estimate the best line
 How many points do we need to estimate the line?

Sample two points

Fit a line to them

Total number of points within a threshold of line.

"7 inlier points"
RANSAC Line Fitting Example

• Task: Estimate the best line

Repeat, until we get a good result.

RANSAC: How many samples?

• How many samples are needed?
 - Suppose w is fraction of inliers (points from line).
 - n points needed to define hypothesis (2 for lines)
 - k samples chosen.

• Prob. that a single sample of n points is correct: w^n

• Prob. that all k samples fail is: $(1 - w^k)^k$

⇒ Choose k high enough to keep this below desired failure rate.

After RANSAC

• RANSAC divides data into inliers and outliers and yields estimate computed from minimal set of inliers.

• Improve this initial estimate with estimation over all inliers (e.g. with standard least-squares minimization).

• But this may change inliers, so alternate fitting with re-classification as inlier/outlier.

Example: Finding Feature Matches

• Find best stereo match within a square search window (here 300 pixels2)

• Global transformation model: epipolar geometry
Example: Finding Feature Matches
- Find best stereo match within a square search window (here 300 pixels x 300 pixels).
- Global transformation model: epipolar geometry

Before RANSAC

After RANSAC

Problem with RANSAC
- In many practical situations, the percentage of outliers (incorrect putative matches) is often very high (90% or above).
- Alternative strategy: Generalized Hough Transform

Strategy 2: Generalized Hough Transform
- Suppose our features are scale- and rotation-invariant
 - Then a single feature match provides an alignment hypothesis (translation, scale, orientation).

Pose Clustering and Verification with SIFT
- To detect instances of objects from a model base:
 1. Index descriptors
 - Distinctive features narrow down possible matches

Indexing Local Features
- Model base
- New image
Pose Clustering and Verification with SIFT

- To detect instances of objects from a model base:
 1. Index descriptors
 - Distinctive features narrow down possible matches
 2. Generalized Hough transform to vote for poses
 - Keypoints have record of parameters relative to model coordinate system
 3. Affine fit to check for agreement between model and image features
 - Fit and verify using features from Hough bins with 3+ votes

Object Recognition Results

- Background subtract for model boundaries
- Objects recognized
- Recognition in spite of occlusion

Recall: Difficulties of Voting

- Noise/clutter can lead to as many votes as true target.
- Bin size for the accumulator array must be chosen carefully.
- (Recall Hough Transform)
- In practice, good idea to make broad bins and spread votes to nearby bins, since verification stage can prune bad vote peaks.

Location Recognition

Training

Applications: Specific Object Recognition

- Sony Aibo
 (Evolution Robotics)
- SIFT usage
 - Recognize docking station
 - Communicate with visual cards

Summary

- Recognition by alignment: looking for object and pose that fits well with image
 - Use good correspondences to designate hypotheses.
 - Invariant local features offer more reliable matches.
 - Find consistent "inlier" configurations in clutter
 - Generalized Hough Transform
 - RANSAC
- Alignment approach to recognition can be effective if we find reliable features within clutter.
 - Application: large-scale image retrieval
 - Application: recognition of specific (mostly planar) objects
 - Movie posters
 - Books
 - CD covers
Topics of This Lecture

- Recognition with Local Features
 - Matching local features
 - Finding consistent configurations
 - Alignment: linear transformations
 - Affine estimation
 - Homography estimation

- Dealing with Outliers
 - RANSAC
 - Generalized Hough Transform

- Indexing with Local Features
 - Inverted file index
 - Visual Words
 - Visual Vocabulary construction
 - tf-idf weighting

Application: Mobile Visual Search

- Take photos of objects as queries for visual search

Large-Scale Image Matching Problem

- How can we perform this matching step efficiently?

Indexing Local Features

- Each patch / region has a descriptor, which is a point in some high-dimensional feature space (e.g., SIFT)

- When we see close points in feature space, we have similar descriptors, which indicates similar local content.

- This is of interest for many applications
 - E.g. Image matching,
 - E.g. Retrieving images of similar objects,
 - E.g. Object recognition, categorization, 3d Reconstruction,...
Indexing Local Features

- With potentially thousands of features per image, and hundreds to millions of images to search, how to efficiently find those that are relevant to a new image?
- Low-dimensional descriptors (e.g. through PCA):
 - Can use standard efficient data structures for nearest neighbor search
- High-dimensional descriptors
 - Approximate nearest neighbor search methods more practical
 - Inverted file indexing schemes

Indexing Local Features: Inverted File Index

- For text documents, an efficient way to find all pages on which a word occurs is to use an index...
- We want to find all images in which a feature occurs.
- To use this idea, we’ll need to map our features to “visual words”.

Text Retrieval vs. Image Search

- What makes the problems similar, different?

Visual Words: Main Idea

- Extract some local features from a number of images...

Visual Words: Main Idea
Visual Words: Main Idea

Each point is a local descriptor, e.g. SIFT vector.

Indexing with Visual Words

Map high-dimensional descriptors to tokens/words by quantizing the feature space.

- Quantize via clustering, let cluster centers be the prototype “words”

Visual Words

- Example: each group of patches belongs to the same visual word
Visual Words: Texture Representation

- First explored for texture and material representations.
- **Texton** = cluster center of filter responses over collection of images.
- Describe textures and materials based on distribution of prototypical texture elements.

Visual Words

- More recently used for describing scenes and objects for the sake of indexing or classification.

Sivic & Zisserman 2003; Csurka, Bray, Dance, & Fan 2004; many others.

Inverted File for Images of Visual Words

When will this give us a significant gain in efficiency?

Visual Vocabulary Formation

Design choices:
- Sampling strategy: where to extract features?
- Clustering / quantization algorithm
- Unsupervised vs. supervised
- What corpus provides features (universal vocabulary?)
- Vocabulary size, number of words

Sampling Strategies

- Sparse, at interest points
- Dense, uniformly
- Randomly

- To find specific, textured objects, sparse sampling from interest points often more reliable.
- Multiple complementary interest operators offer more image coverage.
- For object categorization, dense sampling offers better coverage.

[See Nowak, Jurie & Triggs, ECCV 2006]
Clustering / Quantization Methods

- k-means (typical choice), agglomerative clustering, mean-shift, ...

- Hierarchical clustering: allows faster insertion / word assignment while still allowing large vocabularies
 - Vocabulary tree [Nister & Stewenius, CVPR 2006]

Example: Recognition with Vocabulary Tree

- Tree construction:

Vocabulary Tree

- Training: Filling the tree

Vocabulary Tree

- Training: Filling the tree

Vocabulary Tree

- Training: Filling the tree

Vocabulary Tree

- Training: Filling the tree
Vocabulary Tree

• Training: Filling the tree

Vocabulary Tree

• Recognition

Quiz Questions

• What is the computational advantage of the hierarchical representation vs. a flat vocabulary?

• What dangers does such a representation carry?

Vocabulary Tree: Performance

• Evaluated on large databases
 - Indexing with up to 1M images
 - Online recognition for database of 50,000 CD covers
 - Retrieval in ~1s

 - Experimental finding that large vocabularies can be beneficial for recognition

[Nister & Stewenius, CVPR’06]

Vocabulary Size

• Larger vocabularies can be advantageous...
 - But what happens when the vocabulary gets too large?
 - Efficiency?
 - Robustness?

tf-idf Weighting

• Term frequency - inverse document frequency
• Describe frame by frequency of each word within it, downweight words that appear often in the database
• (Standard weighting for text retrieval)

\[t_i = \frac{n_{id}}{n_i} \log \frac{N}{n_i} \]

- Number of occurrences of word \(i \) in document \(d \)
- Number of occurrences of word \(i \) in whole database

- Total number of documents in database
- Number of words in document \(d \)
Summary: Indexing features

- Detect or sample features
- List of positions, scales, orientations
- Describe features
- Associated list of d-dimensional descriptors
- Index each one into pool of descriptors from previously seen images
- Quantize to form “bag of words” vector for the image

References and Further Reading

- A detailed description of local feature extraction and recognition can be found in Chapters 3-5 of Grauman & Leibe (available on the L2P).
- More details on RANSAC can also be found in Chapter 4.7 of Hartley & Zisserman.

Summary

- Local invariant features
 - Distinctive matches possible in spite of significant view change, useful not only to provide matches for image stitching/multi-view geometry, but also to find objects and scenes.
 - To find correspondences among detected features, measure distance between descriptors, and look for most similar patches.

- Visual vocabulary representation
 - Quantize feature space to make discrete set of visual words
 - Index individual words
 - Inverted index: pre-compute index to enable faster search at query time

- Geometric verification
 - Use RANSAC to estimate transformation between feature constellations in both images

References:

- K. Grauman, B. Leibe
 Visual Object Recognition
 Morgan & Claypool publishers, 2011

- R. Hartley, A. Zisserman
 Multiple View Geometry in Computer Vision
 2nd Ed., Cambridge Univ. Press, 2004