Computer Vision - Lecture 17

Structure-from-Motion

17.01.2012

Bastian Leibe
RWTH Aachen
http://www.mmp.rwth-aachen.de
leibe@umic.rwth-aachen.de

Many slides adapted from Svetlana Lazebnik, Martial Hebert, Steve Seitz
Course Outline

- Image Processing Basics
- Segmentation & Grouping
- Object Recognition
- Local Features & Matching
- Object Categorization
- 3D Reconstruction
 - Epipolar Geometry and Stereo Basics
 - Camera calibration & Uncalibrated Reconstruction
 - Structure-from-Motion
- Motion and Tracking
Recap: A General Point

- Equations of the form
 \[Ax = 0 \]

- How do we solve them? (always!)
 - Apply SVD

 \[
 A = UDV^T = U \begin{bmatrix}
 d_{11} & & \\
 & \ddots & \\
 & & d_{NN}
 \end{bmatrix}
 \begin{bmatrix}
 v_{11} & \cdots & v_{1N} \\
 \vdots & \ddots & \vdots \\
 v_{N1} & \cdots & v_{NN}
 \end{bmatrix}^T
 \]

 - Singular values of \(A \) = square roots of the eigenvalues of \(A^T A \).
 - The solution of \(Ax=0 \) is the nullspace vector of \(A \).
 - This corresponds to the smallest singular vector of \(A \).

B. Leibe
Recap: Properties of SVD

• Frobenius norm
 - Generalization of the Euclidean norm to matrices
 \[
 \|A\|_F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2} = \sqrt{\sum_{i=1}^{\min(m,n)} \sigma_i^2}
 \]

• Partial reconstruction property of SVD
 - Let $\sigma_i, i=1,\ldots,N$ be the singular values of A.
 - Let $A_p = U_p D_p V_p^T$ be the reconstruction of A when we set $\sigma_{p+1},\ldots,\sigma_N$ to zero.
 - Then $A_p = U_p D_p V_p^T$ is the best rank-p approximation of A in the sense of the Frobenius norm (i.e. the best least-squares approximation).
Recap: Camera Parameters

- **Intrinsic parameters**
 - Principal point coordinates
 - Focal length
 - Pixel magnification factors
 - *Skew (non-rectangular pixels)*
 - *Radial distortion*

- **Extrinsic parameters**
 - Rotation \(R \)
 - Translation \(t \)
 (both relative to world coordinate system)

- **Camera projection matrix**
 \[
 P = K[R | t]
 \]

 - General pinhole camera: 9 DoF
 - CCD Camera with square pixels: 10 DoF
 - General camera: 11 DoF
Recap: Calibrating a Camera

Goal
• Compute intrinsic and extrinsic parameters using observed camera data.

Main idea
• Place “calibration object” with known geometry in the scene
• Get correspondences
• Solve for mapping from scene to image: estimate $P = P_{\text{int}}P_{\text{ext}}$
Recap: Camera Calibration (DLT Algorithm)

\[
\begin{pmatrix}
0^T & X_1^T & -y_1X_1^T \\
X_1^T & 0^T & -x_1X_1^T \\
\vdots & \vdots & \vdots \\
0^T & X_n^T & -y_nX_n^T \\
X_n^T & 0^T & -x_nX_n^T
\end{pmatrix}
\begin{pmatrix}
P_1 \\
P_2 \\
P_3
\end{pmatrix} = 0 \quad Ap = 0
\]

- \(P \) has 11 degrees of freedom.
- Two linearly independent equations per independent 2D/3D correspondence.
- **Solve with SVD** (similar to homography estimation)
 - Solution corresponds to smallest singular vector.
- 5 ½ correspondences needed for a minimal solution.
Recap: Triangulation - Linear Algebraic Approach

- Two independent equations each in terms of three unknown entries of X.
- Stack equations and solve with SVD.
- This approach nicely generalizes to multiple cameras.

\[\lambda_1 x_1 = P_1 X \quad x_1 \times P_1 X = 0 \quad [x_1 \times] P_1 X = 0 \]
\[\lambda_2 x_2 = P_2 X \quad x_2 \times P_2 X = 0 \quad [x_2 \times] P_2 X = 0 \]

Slide credit: Svetlana Lazebnik
Recap: Epipolar Geometry - Calibrated Case

$x \cdot [t \times (Rx')] = 0 \quad \Rightarrow \quad x^T E x' = 0 \quad \text{with} \quad E = [t_x]R$

Essential Matrix (Longuet-Higgins, 1981)
Recap: Epipolar Geometry - Uncalibrated Case

- The calibration matrices K and K' of the two cameras are unknown.
- We can write the epipolar constraint in terms of unknown normalized coordinates:

$$\hat{x}^T E \hat{x}' = 0$$

$$x = K \hat{x}, \quad x' = K' \hat{x}'$$
Recap: Epipolar Geometry - Uncalibrated Case

\[\hat{x}^T E \hat{x}' = 0 \quad \Rightarrow \quad x^T F x' = 0 \quad \text{with} \quad F = K^{-T} E K'^{-1} \]

\[
\begin{align*}
 x &= K \hat{x} \\
 x' &= K' \hat{x}'
\end{align*}
\]

Fundamental Matrix
(Faugeras and Luong, 1992)
Recap: The Eight-Point Algorithm

\[x = (u, v, 1)^T, \quad x' = (u', v', 1)^T \]

\[
\begin{pmatrix}
F_{11} & F_{12} & F_{13} \\
F_{21} & F_{22} & F_{23} \\
F_{31} & F_{32} & F_{33}
\end{pmatrix}
\begin{pmatrix}
u' \\
v'
\end{pmatrix}
= 0
\]

\[
\begin{bmatrix}
F_{11} \\
F_{12} \\
F_{13} \\
F_{21} \\
F_{22} \\
F_{23} \\
F_{31} \\
F_{32} \\
F_{33}
\end{bmatrix} = 0
\]

This minimizes:

\[
\sum_{i=1}^{N} (x_i^T F x_i')^2
\]

Solve using... SVD!
Recap: Normalized Eight-Point Algorithm

1. Center the image data at the origin, and scale it so the mean squared distance between the origin and the data points is 2 pixels.

2. Use the eight-point algorithm to compute F from the normalized points.

3. Enforce the rank-2 constraint using SVD.

$$F = UDV^T = U \begin{bmatrix} d_{11} & d_{22} & d_{33} \\ \vdots & \vdots & \vdots \\ v_{31} & \ldots & v_{33} \end{bmatrix}$$

Set d_{33} to zero and reconstruct F

4. Transform fundamental matrix back to original units: if T and T' are the normalizing transformations in the two images, than the fundamental matrix in original coordinates is $T^T F T'$.
Active Stereo with Structured Light

- Idea: Project “structured” light patterns onto the object
 - simplifies the correspondence problem
 - Allows us to use only one camera
Microsoft Kinect - How Does It Work?

- Built-in IR projector
- IR camera for depth
- Regular camera for color

B. Leibe
Recall: Optical Triangulation

Image plane

3D Scene point X

x_1

Camera center

O_1
Recall: Optical Triangulation

- Principle: 3D point given by intersection of two rays.
 - Crucial information: point correspondence
 - Most expensive and error-prone step in the pipeline...
Active Stereo with Structured Light

- **Idea:** Replace one camera by a projector.
 - Project “structured” light patterns onto the object
 - Simplifies the correspondence problem
What the Kinect Sees...
3D Reconstruction with the Kinect

SIGGRAPH Talks 2011
KinectFusion:
Real-Time Dynamic 3D Surface Reconstruction and Interaction

Shahram Izadi 1, Richard Newcombe 2, David Kim 1,3, Otmart Hilliges 1,
David Molyneaux 1,4, Pushmeet Kohli 1, Jamie Shotton 1,
Steve Hodges 1, Dustin Freeman 5, Andrew Davison 2, Andrew Fitzgibbon 1

1 Microsoft Research Cambridge 2 Imperial College London
3 Newcastle University 4 Lancaster University
5 University of Toronto

B. Leibe
Laser Scanning

- Optical triangulation
 - Project a single stripe of laser light
 - Scan it across the surface of the object
 - This is a very precise version of structured light scanning

Digital Michelangelo Project
http://graphics.stanford.edu/projects/mich/
Laser Scanned Models

The Digital Michelangelo Project, Levoy et al.

Slide credit: Steve Seitz
Laser Scanned Models

The Digital Michelangelo Project, Levoy et al.

Slide credit: Steve Seitz
Laser Scanned Models

The Digital Michelangelo Project, Levoy et al.

Slide credit: Steve Seitz
Laser Scanned Models

The Digital Michelangelo Project, Levoy et al.

Slide credit: Steve Seitz
Laser Scanned Models

The Digital Michelangelo Project, Levoy et al.
Topics of This Lecture

- **Structure from Motion (SfM)**
 - Motivation
 - Ambiguity

- **Affine SfM**
 - Affine cameras
 - Affine factorization
 - Euclidean upgrade
 - Dealing with missing data

- **Projective SfM**
 - Two-camera case
 - Projective factorization
 - Bundle adjustment
 - Practical considerations

- **Applications**
Structure from Motion

- Given: m images of n fixed 3D points
 \[x_{ij} = P_i X_j, \quad i = 1, \ldots, m, \quad j = 1, \ldots, n \]

- Problem: estimate m projection matrices P_i and n 3D points X_j from the mn correspondences x_{ij}

Slide credit: Svetlana Lazebnik

B. Leibe
What Can We Use This For?

- E.g. movie special effects
Structure from Motion Ambiguity

- If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of $1/k$, the projections of the scene points in the image remain exactly the same:

$$ x = PX = \left(\frac{1}{k}P\right) (kX) $$

\Rightarrow It is impossible to recover the absolute scale of the scene!
Structure from Motion Ambiguity

• If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of $1/k$, the projections of the scene points in the image remain exactly the same.

• More generally: if we transform the scene using a transformation Q and apply the inverse transformation to the camera matrices, then the images do not change

$$x = PX = (PQ^{-1})QX$$
Reconstruction Ambiguity: Similarity

\[x = PX = (PQ_S^{-1})Q_SX \]
Reconstruction Ambiguity: Affine

\[x = PX = (PQ_A^{-1})Q_A X \]
Reconstruction Ambiguity: Projective

\[x = PX = (PQ_P^{-1})Q_PX \]
Projective Ambiguity
From Projective to Affine
From Affine to Similarity

Slide credit: Svetlana Lazebnik

Images from Hartley & Zisserman
Hierarchy of 3D Transformations

- Projective 15dof: $\begin{bmatrix} A & t \\ v^T & v \end{bmatrix}$
 - Preserves intersection and tangency

- Affine 12dof: $\begin{bmatrix} A & t \\ 0^T & 1 \end{bmatrix}$
 - Preserves parallellism, volume ratios

- Similarity 7dof: $\begin{bmatrix} sR & t \\ 0^T & 1 \end{bmatrix}$
 - Preserves angles, ratios of length

- Euclidean 6dof: $\begin{bmatrix} R & t \\ 0^T & 1 \end{bmatrix}$
 - Preserves angles, lengths

- With no constraints on the camera calibration matrix or on the scene, we get a projective reconstruction.
- Need additional information to upgrade the reconstruction to affine, similarity, or Euclidean.

Slide credit: Svetlana Lazebnik
Topics of This Lecture

- Structure from Motion (SfM)
 - Motivation
 - Ambiguity

- Affine SfM
 - Affine cameras
 - Affine factorization
 - Euclidean upgrade
 - Dealing with missing data

- Projective SfM
 - Two-camera case
 - Projective factorization
 - Bundle adjustment
 - Practical considerations

- Applications
Structure from Motion

- Let’s start with *affine cameras* (the math is easier)
Orthographic Projection

- Special case of perspective projection
 - Distance from center of projection to image plane is infinite

> Projection matrix:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix} =
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\Rightarrow (x, y)
\]
Affine Cameras

Orthographic Projection

Parallel Projection

Slide credit: Svetlana Lazebnik
Affine Cameras

• A general affine camera combines the effects of an affine transformation of the 3D space, orthographic projection, and an affine transformation of the image:

\[
P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad [4\times4\text{ affine}] = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} A & b \\ 0 & 1 \end{bmatrix}
\]

• Affine projection is a linear mapping + translation in inhomogeneous coordinates

\[
x = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = AX + b
\]

Projection of world origin

Slide credit: Svetlana Lazebnik
Affine Structure from Motion

• Given: m images of n fixed 3D points:
 • $x_{ij} = A_i X_j + b_i$, $i = 1, \ldots, m$, $j = 1, \ldots, n$

• Problem: use the mn correspondences x_{ij} to estimate m projection matrices A_i and translation vectors b_i, and n points X_j

• The reconstruction is defined up to an arbitrary affine transformation Q (12 degrees of freedom):

$$
\begin{bmatrix}
A & b \\
0 & 1
\end{bmatrix}
\rightarrow
\begin{bmatrix}
A & b \\
0 & 1
\end{bmatrix}Q^{-1},
\begin{bmatrix}
X \\
1
\end{bmatrix}
\rightarrow
Q\begin{bmatrix}
X \\
1
\end{bmatrix}
$$

• We have $2mn$ knowns and $8m + 3n$ unknowns (minus 12 dof for affine ambiguity).
 - Thus, we must have $2mn \geq 8m + 3n - 12$.
 - For two views, we need four point correspondences.
Affine Structure from Motion

- Centering: subtract the centroid of the image points

\[
\hat{x}_{ij} = x_{ij} - \frac{1}{n} \sum_{k=1}^{n} x_{ik} = A_i X_j + b_i - \frac{1}{n} \sum_{k=1}^{n} (A_i X_k + b_i)
\]

\[
= A_i \left(X_j - \frac{1}{n} \sum_{k=1}^{n} X_k \right) = A_i \hat{X}_j
\]

- For simplicity, assume that the origin of the world coordinate system is at the centroid of the 3D points.
- After centering, each normalized point \(x_{ij} \) is related to the 3D point \(X_i \) by

\[
\hat{X}_{ij} = A_i X_j
\]
Affine Structure from Motion

- Let’s create a $2m \times n$ data (measurement) matrix:

$$D = \begin{bmatrix}
\hat{X}_{11} & \hat{X}_{12} & \cdots & \hat{X}_{1n} \\
\hat{X}_{21} & \hat{X}_{22} & \cdots & \hat{X}_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\hat{X}_{m1} & \hat{X}_{m2} & \cdots & \hat{X}_{mn}
\end{bmatrix}$$

Cameras (2m)
Points (n)

Affine Structure from Motion

- Let’s create a $2m \times n$ data (measurement) matrix:

$$
D = \begin{bmatrix}
\hat{x}_{11} & \hat{x}_{12} & \cdots & \hat{x}_{1n} \\
\hat{x}_{21} & \hat{x}_{22} & \cdots & \hat{x}_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\hat{x}_{m1} & \hat{x}_{m2} & \cdots & \hat{x}_{mn}
\end{bmatrix} = \begin{bmatrix}
A_1 \\
A_2 \\
\vdots \\
A_m
\end{bmatrix}
\begin{bmatrix}
X_1 \\
X_2 \\
\vdots \\
X_n
\end{bmatrix}
$$

Points $(3 \times n)$

Cameras $(2m \times 3)$

- The measurement matrix $D = MS$ must have rank 3!

Factorizing the Measurement Matrix

$$2m \text{ Measurements} = \text{ Motion} \times \text{ Shape}$$

$$D = MS$$

Slide credit: Martial Hebert
Factorizing the Measurement Matrix

- Singular value decomposition of D:
Factorizing the Measurement Matrix

- Singular value decomposition of D:

$$
\begin{align*}
D &= U W V^T \\
D &= U_3 W_3 V_3^T
\end{align*}
$$

To reduce to rank 3, we just need to set all the singular values to 0 except for the first 3.
Factorizing the Measurement Matrix

- Obtaining a factorization from SVD:

\[2m \begin{pmatrix} D \end{pmatrix} = \begin{pmatrix} U_3 \end{pmatrix} \times 3 \begin{pmatrix} W_3 \end{pmatrix} \times \begin{pmatrix} V_3^T \end{pmatrix} \]

Slide credit: Martial Hebert
Factorizing the Measurement Matrix

- Obtaining a factorization from SVD:

\[D = U_3 \times W_3 \times V_3^T \]

Possible decomposition:

\[M = U_3 W_3^{1/2} \quad S = W_3^{1/2} V_3^T \]

This decomposition minimizes \(|D-MS|^2|\)
Affine Ambiguity

- The decomposition is not unique. We get the same D by using any 3×3 matrix C and applying the transformations $M \rightarrow MC, S \rightarrow C^{-1}S$.
- That is because we have only an affine transformation and we have not enforced any Euclidean constraints (like forcing the image axes to be perpendicular, for example). We need a *Euclidean upgrade*.
Estimating the Euclidean Upgrade

- Orthographic assumption: image axes are perpendicular and scale is 1.

\[a_1 \cdot a_2 = 0 \]
\[|a_1|^2 = |a_2|^2 = 1 \]

- This can be converted into a system of 3m equations:

\[
\begin{align*}
\hat{a}_{i_1} \cdot \hat{a}_{i_2} &= 0 \\
|\hat{a}_{i_1}| &= 1 \\
|\hat{a}_{i_2}| &= 1
\end{align*}
\]

\[
\begin{align*}
a_{i_1}^T CC^T a_{i_2} &= 0 \\
a_{i_1}^T CC^T a_{i_1} &= 1, \quad i = 1, \ldots, m \\
a_{i_2}^T CC^T a_{i_2} &= 1
\end{align*}
\]

for the transformation matrix \(C \) \(\Rightarrow \) goal: estimate \(C \)
Estimating the Euclidean Upgrade

- System of $3m$ equations:

$$
\begin{align*}
\hat{a}_{i_1} \cdot \hat{a}_{i_2} &= 0 \\
|\hat{a}_{i_1}| &= 1 \Leftrightarrow \begin{cases}
\hat{a}_{i_1} \cdot \hat{a}_{i_2} = 0 \\
\hat{a}_{i_1} \cdot \hat{a}_{i_2} = 1 \\
\end{cases}
\end{align*}

\begin{equation}
\begin{cases}
a_{i_1}^T C C^T a_{i_2} = 0 \\
a_{i_1}^T C C^T a_{i_1} = 1, \quad i = 1, \ldots, m \\
a_{i_2}^T C C^T a_{i_2} = 1
\end{cases}
\end{equation}

- Let $L = C C^T$
 $A_i = \begin{bmatrix} a_{i_1}^T \\ a_{i_2}^T \end{bmatrix}, \quad i = 1, \ldots, m$

- Then this translates to $3m$ equations in L

$$A_i L A_i^T = I, \quad i = 1, \ldots, m$$

- Solve for L
- Recover C from L by Cholesky decomposition: $L = C C^T$
- Update M and S: $M = MC$, $S = C^{-1}S$

Slide adapted from S. Lazebnik, M. Hebert
Algorithm Summary

- Given: m images and n features x_{ij}
- For each image i, center the feature coordinates.
- Construct a $2m \times n$ measurement matrix D:
 - Column j contains the projection of point j in all views
 - Row i contains one coordinate of the projections of all the n points in image i
- Factorize D:
 - Compute SVD: $D = U W V^T$
 - Create U_3 by taking the first 3 columns of U
 - Create V_3 by taking the first 3 columns of V
 - Create W_3 by taking the upper left 3×3 block of W
- Create the motion and shape matrices:
 - $M = U_3 W_3^{\frac{1}{2}}$ and $S = W_3^{\frac{1}{2}} V_3^T$ (or $M = U_3$ and $S = W_3 V_3^T$)
- Eliminate affine ambiguity

Slide credit: Martial Hebert
Reconstruction Results

Image Source: Tomasi & Kanade
Dealing with Missing Data

- So far, we have assumed that all points are visible in all views.
- In reality, the measurement matrix typically looks something like this:
Dealing with Missing Data

- Possible solution: decompose matrix into dense sub-blocks, factorize each sub-block, and fuse the results
 - Finding dense maximal sub-blocks of the matrix is NP-complete (equivalent to finding maximal cliques in a graph)
- Incremental bilinear refinement

(1) Perform factorization on a dense sub-block

Slide credit: Svetlana Lazebnik
Dealing with Missing Data

- Possible solution: decompose matrix into dense sub-blocks, factorize each sub-block, and fuse the results
 - Finding dense maximal sub-blocks of the matrix is NP-complete (equivalent to finding maximal cliques in a graph)

- Incremental bilinear refinement

1. Perform factorization on a dense sub-block
2. Solve for a new 3D point visible by at least two known cameras (linear least squares)

Slide credit: Svetlana Lazebnik
Dealing with Missing Data

- Possible solution: decompose matrix into dense sub-blocks, factorize each sub-block, and fuse the results
 - Finding dense maximal sub-blocks of the matrix is NP-complete (equivalent to finding maximal cliques in a graph)
- Incremental bilinear refinement

1. Perform factorization on a dense sub-block
2. Solve for a new 3D point visible by at least two known cameras (linear least squares)
3. Solve for a new camera that sees at least three known 3D points (linear least squares)

Comments: Affine SfM

- Affine SfM was historically developed first.
- It is valid under the assumption of *affine cameras*.
 - Which does not hold for real physical cameras...
 - ...but which is still tolerable if the scene points are far away from the camera.

- For good results with real cameras, we typically need projective SfM.
 - Harder problem, more ambiguity
 - Math is a bit more involved...
 (Here, only basic ideas. If you want to implement it, please look at the H&Z book for details).
Topics of This Lecture

- Structure from Motion (SfM)
 - Motivation
 - Ambiguity
- Affine SfM
 - Affine cameras
 - Affine factorization
 - Euclidean upgrade
 - Dealing with missing data
- Projective SfM
 - Two-camera case
 - Projective factorization
 - Bundle adjustment
 - Practical considerations
- Applications
Projective Structure from Motion

- Given: \(m \) images of \(n \) fixed 3D points

 \[x_{ij} = P_i X_j, \quad i = 1, \ldots, m, \quad j = 1, \ldots, n \]

- Problem: estimate \(m \) projection matrices \(P_i \) and \(n \) 3D points \(X_j \) from the \(mn \) correspondences \(x_{ij} \)

Slide credit: Svetlana Lazebnik

B. Leibe
Projective Structure from Motion

- Given: m images of n fixed 3D points
 - $z_{ij} x_{ij} = P_i x_j$, $i = 1, \ldots, m$, $j = 1, \ldots, n$

- Problem: estimate m projection matrices P_i and n 3D points X_j from the mn correspondences x_{ij}

- With no calibration info, cameras and points can only be recovered up to a 4x4 projective transformation Q: $X \rightarrow QX$, $P \rightarrow PQ^{-1}$

- We can solve for structure and motion when

 $2mn \geq 11m + 3n - 15$

- For two cameras, at least 7 points are needed.
Projective SfM: Two-Camera Case

- Assume fundamental matrix F between the two views
 - First camera matrix: $[I|0]Q^{-1}$
 - Second camera matrix: $[A|b]Q^{-1}$

- Let $\tilde{X} = QX$, then
 $$z'x' = [I\ 0]\tilde{X}, \quad z'x' = [A\b]\tilde{X}$$

- And
 $$z'x' = A[I\ 0]\tilde{X} + b = zAx + b$$
 $$z'x' \times b = zAx \times b$$
 $$(z'x' \times b) \cdot x' = (zAx \times b) \cdot x'$$
 $$0 = (zAx \times b) \cdot x'$$

- So we have
 $$x'^T[b_x]Ax = 0$$
 $$F = [b_x]A \quad b: \text{epipole (}F^Tb = 0\), \quad A = -[b_x]F$$

Slide adapted from Svetlana Lazebnik
Projective SfM: Two-Camera Case

- This means that if we can compute the fundamental matrix between two cameras, we can directly estimate the two projection matrices from F.

- Once we have the projection matrices, we can compute the 3D position of any point X by triangulation.

- How can we obtain both kinds of information at the same time?
Projective Factorization

\[
D = \begin{bmatrix}
 z_{11}x_{11} & z_{12}x_{12} & \cdots & z_{1n}x_{1n} \\
 z_{21}x_{21} & z_{22}x_{22} & \cdots & z_{2n}x_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 z_{m1}x_{m1} & z_{m2}x_{m2} & \cdots & z_{mn}x_{mn}
\end{bmatrix} = \begin{bmatrix}
P_1 \\
P_2 \\
\vdots \\
P_m
\end{bmatrix} \begin{bmatrix}
X_1 \\
X_2 \\
\vdots \\
X_n
\end{bmatrix}
\]

Points (4 x n)

Cameras (3m x 4)

\[
D = MS \text{ has rank 4}
\]

- If we knew the depths z, we could factorize D to estimate M and S.
- If we knew M and S, we could solve for z.
- Solution: iterative approach (alternate between above two steps).

Slide credit: Svetlana Lazebnik
Sequential Structure from Motion

- Initialize motion from two images using fundamental matrix
- Initialize structure
- For each additional view:
 - Determine projection matrix of new camera using all the known 3D points that are visible in its image - *calibration*
Sequential Structure from Motion

- Initialize motion from two images using fundamental matrix
- Initialize structure
- For each additional view:
 - Determine projection matrix of new camera using all the known 3D points that are visible in its image - *calibration*
 - Refine and extend structure: compute new 3D points, re-optimize existing points that are also seen by this camera - *triangulation*
Sequential Structure from Motion

- Initialize motion from two images using fundamental matrix
- Initialize structure
- For each additional view:
 - Determine projection matrix of new camera using all the known 3D points that are visible in its image - calibration
 - Refine and extend structure: compute new 3D points, re-optimize existing points that are also seen by this camera - triangulation
- Refine structure and motion: bundle adjustment

Slide credit: Svetlana Lazebnik
Bundle Adjustment

- Non-linear method for refining structure and motion
- Minimizing mean-square reprojection error

\[E(P, X) = \sum_{i=1}^{m} \sum_{j=1}^{n} D(x_{ij}, P_i X_j)^2 \]
Bundle Adjustment

• Seeks the Maximum Likelihood (ML) solution assuming the measurement noise is Gaussian.
• It involves adjusting the bundle of rays between each camera center and the set of 3D points.
• Bundle adjustment should generally be used as the final step of any multi-view reconstruction algorithm.
 ➢ Considerably improves the results.
 ➢ Allows assignment of individual covariances to each measurement.

• However...
 ➢ It needs a good initialization.
 ➢ It can become an extremely large minimization problem.
• Very efficient algorithms available.
Projective Ambiguity

- If we don’t know anything about the camera or the scene, the best we can get with this is a reconstruction up to a projective ambiguity Q.
 - This can already be useful.
 - E.g. we can answer questions like “at what point does a line intersect a plane”?

- If we want to convert this to a “true” reconstruction, we need a *Euclidean upgrade*.
 - Need to put in additional knowledge about the camera (calibration) or about the scene (e.g. from markers).
 - Several methods available (see F&P Chapter 13.5 or H&Z Chapter 19)
Self-Calibration

- Self-calibration (auto-calibration) is the process of determining intrinsic camera parameters directly from uncalibrated images.
- For example, when the images are acquired by a single moving camera, we can use the constraint that the intrinsic parameter matrix remains fixed for all the images.
 - Compute initial projective reconstruction and find 3D projective transformation matrix Q such that all camera matrices are in the form $P_i = K [R_i \mid t_i]$.
- Can use constraints on the form of the calibration matrix: square pixels, zero skew, fixed focal length, etc.
1. Role of the baseline
 - Small baseline: large depth error
 - Large baseline: difficult search problem

• Solution
 - Track features between frames until baseline is sufficient.
Practical Considerations (2)

2. There will still be many outliers
 - Incorrect feature matches
 - Moving objects

⇒ Apply RANSAC to get robust estimates based on the inlier points.

3. Estimation quality depends on the point configuration
 - Points that are close together in the image produce less stable solutions.

⇒ Subdivide image into a grid and try to extract about the same number of features per grid cell.
General Guidelines

• Use calibrated cameras wherever possible.
 ➢ It makes life so much easier, especially for SfM.

• SfM with 2 cameras is \textit{far} more robust than with a single camera.
 ➢ Triangulate feature points in 3D using stereo.
 ➢ Perform 2D-3D matching to recover the motion.
 ➢ More robust to loss of scale (main problem of 1-camera SfM).

• Any constraint on the setup can be useful
 ➢ E.g. square pixels, zero skew, fixed focal length in each camera
 ➢ E.g. fixed baseline in stereo SfM setup
 ➢ E.g. constrained camera motion on a ground plane
 ➢ Making best use of those constraints may require adapting the algorithms (some known results are described in H&Z).
Structure-from-Motion: Limitations

- Very difficult to reliably estimate metric SfM unless
 - Large (x or y) motion or
 - Large field-of-view and depth variation
- Camera calibration important for Euclidean reconstruction
- Need good feature tracker
Topics of This Lecture

- **Structure from Motion (SfM)**
 - Motivation
 - Ambiguity

- **Affine SfM**
 - Affine cameras
 - Affine factorization
 - Euclidean upgrade
 - Dealing with missing data

- **Projective SfM**
 - Two-camera case
 - Projective factorization
 - Bundle adjustment
 - Practical considerations

- **Applications**
Commercial Software Packages

- boujou
 (http://www.2d3.com/)
- PFTTrack
 (http://www.thepixelfarm.co.uk/)
- MatchMover
 (http://www.realviz.com/)
- SynthEyes
 (http://www.ssontech.com/)
- Icarus
 (http://aig.cs.man.ac.uk/research/reveal/icarus/)
- Voodoo Camera Tracker
 (http://www.digilab.uni-hannover.de/)
boujou demo

(We have a license available at i8, so if you want to try it for interesting projects, contact us.)

B. Leibe
Applications: Matchmoving

- Putting virtual objects into real-world videos

Original sequence SfM results Tracked features Final video

B. Leibe

Videos from Stefan Hafeneger
Applications: Large-Scale SfM from Flickr

References and Further Reading

• A (relatively short) treatment of affine and projective SfM and the basic ideas and algorithms can be found in Chapters 12 and 13 of

 D. Forsyth, J. Ponce,

• More detailed information (if you really want to implement this) and better explanations can be found in Chapters 10, 18 (factorization) and 19 (self-calibration) of

 R. Hartley, A. Zisserman
 Multiple View Geometry in Computer Vision 2nd Ed., Cambridge Univ. Press, 2004