Course Outline

- Image Processing Basics
- Segmentation & Grouping
- Object Recognition
- Local Features & Matching
- Object Categorization
- 3D Reconstruction
- Motion and Tracking
 - Motion and Optical Flow
 - Tracking with Linear Dynamic Models
- Repetition

Recap: Structure from Motion

- Given: \(m \) images of \(n \) fixed 3D points
 \[x_i = P X_i, \quad i = 1, \ldots, m, \quad j = 1, \ldots, n \]
- Problem: estimate \(m \) projection matrices \(P \), and \(n \) 3D points \(X \) from the \(mn \) correspondences \(x_{ij} \)

Recap: Structure from Motion Ambiguity

- If we scale the entire scene by some factor \(k \) and, at the same time, scale the camera matrices by the factor of \(1/k \), the projections of the scene points in the image remain exactly the same.
- More generally: if we transform the scene using a transformation \(Q \) and apply the inverse transformation to the camera matrices, then the images do not change

\[
x = P X = (P Q^{-1}) Q X
\]
Recap: Affine Structure from Motion
- Let’s create a $2m \times n$ data (measurement) matrix:

$$D = \begin{bmatrix}
\hat{x}_{11} & \hat{x}_{12} & \cdots & \hat{x}_{1n} \\
\hat{x}_{21} & \hat{x}_{22} & \cdots & \hat{x}_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\hat{x}_{m1} & \hat{x}_{m2} & \cdots & \hat{x}_{mn}
\end{bmatrix}$$

Points $(3 \times n)$

Cameras $(2m \times 3)$

- The measurement matrix $D = MS$ must have rank 3!

Slide credit: Svetlana Lazebnik

Recap: Affine Factorization
- Obtaining a factorization from SVD:

$$D = U_3 W_{22} S_3 W_{22}^T V_3^T$$

Possible decomposition:

$$M = U_3 W_{22}$$

S = $W_{22}^T V_3$

This decomposition minimizes $|| D - MS ||^2$

Slide credit: Martial Hebert

Projective Structure from Motion
- Given: m images of n fixed 3D points

$$z_i X_0 = P_i X_0, \quad i = 1, \ldots, m, \quad j = 1, \ldots, n$$

- Problem: estimate m projection matrices P_i and n 3D points X_0 from the mn correspondences x_{ij}

- With no calibration info, cameras and points can only be recovered up to a 4×4 projective transformation Q:

$$X \rightarrow QX, \quad P \rightarrow PQ^{-1}$$

- We can solve for structure and motion when

$$2mn = \frac{11m + 3n - 15}{2}$$

- For two cameras, at least 7 points are needed.

Slide credit: Svetlana Lazebnik

Projective Factorization
- Known points X_0 that are also seen by this camera –

$$D = P_1 \cdots P_n \begin{bmatrix}
z_1 X_{11} & z_1 X_{12} & \cdots & z_1 X_{1n} \\
z_2 X_{21} & z_2 X_{22} & \cdots & z_2 X_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
z_m X_{m1} & z_m X_{m2} & \cdots & z_m X_{mn}
\end{bmatrix}$$

Points $(4 \times n)$

Cameras $(3m \times 4)$

- If we knew the depths z, we could factorize D to estimate M and S.
- If we knew M and S, we could solve for z.
- Solution: iterative approach (alternate between above two steps).

Slide credit: Svetlana Lazebnik

Sequential Structure from Motion
- Initialize motion from two images using fundamental matrix

Slide credit: Svetlana Lazebnik

Sequential Structure from Motion
- Initialize motion from two images using fundamental matrix

- Initialize structure

- For each additional view:
 - Determine projection matrix of new camera using all the known 3D points that are visible in its image - calibration
 - Refine and extend structure: compute new 3D points, re-optimize existing points that are also seen by this camera - triangulation

Slide credit: Svetlana Lazebnik

Slide credit: Martial Hebert
Sequential Structure from Motion

- Initialize motion from two images using fundamental matrix
- Initialize structure
- For each additional view:
 - Determine projection matrix of new camera using all the known 3D points that are visible in its image - calibration
 - Refine and extend structure: compute new 3D points, re-optimize existing points that are also seen by this camera - triangulation
- Refine structure and motion: bundle adjustment

Bundle Adjustment

- Non-linear method for refining structure and motion
- Minimizing mean-square reprojection error
 \[E(P, X) = \sum_{i=1}^{n} D(x_i, PX_i) \]

Practical Considerations (1)

1. Role of the baseline
 - Small baseline: large depth error
 - Large baseline: difficult search problem
2. Solution
 - Track features between frames until baseline is sufficient.

Practical Considerations (2)

2. There will still be many outliers
 - Incorrect feature matches
 - Moving objects
 ⇒ Apply RANSAC to get robust estimates based on the inlier points.
3. Estimation quality depends on the point configuration
 - Points that are close together in the image produce less stable solutions.
 ⇒ Subdivide image into a grid and try to extract about the same number of features per grid cell.

Some Commercial Software Packages

- boujou (http://www.2d3.com/)
- PFTTrack (http://www.thepixelfarm.co.uk/)
- MatchMover (http://www.realviz.com/)
- SynthEyes (http://www.ssontech.com/)
- icarus (http://aig.cs.man.ac.uk/research/reveal/icarus/)
- Voodoo Camera Tracker (http://www.digilab.uni-hannover.de/)
Applications: Matchmoving

- Putting virtual objects into real-world videos

 Original sequence | **Tracked features** | **SfM results** | **Final video**

[Image: Matchmoving example]

Video

- A video is a sequence of frames captured over time
- Now our image data is a function of space \((x, y)\) and time \((t)\)

[Image: Video sequence]

Applications of Segmentation to Video

- Background subtraction
 - A static camera is observing a scene.
 - Goal: separate the static background from the moving foreground.

How to come up with background frame estimate without access to "empty" scene?

[Image: Background subtraction example]

Video

- Background subtraction
- Shot boundary detection
 - Commercial video is usually composed of shots or sequences showing the same objects or scene.
 - Goal: segment video into shots for summarization and browsing (each shot can be represented by a single keyframe in a user interface).
 - Difference from background subtraction: the camera is not necessarily stationary.
Applications of Segmentation to Video

- Background subtraction
- Shot boundary detection
 - For each frame, compute the distance between the current frame and the previous one:
 - Pixel-by-pixel differences
 - Differences of color histograms
 - Block comparison
 - If the distance is greater than some threshold, classify the frame as a shot boundary.

Motion and Perceptual Organization
- Sometimes, motion is the only cue...
 - Not grouped
 - Proximity
 - Similarity
 - Symmetry
 - Common Scene
 - Common Region
 - Continuity
 - Closure

Motion and Perceptual Organization
- Sometimes, motion is foremost cue

Motion and Perceptual Organization
- Even “impoverished” motion data can evoke a strong percept

Motion and Perceptual Organization
- Even “impoverished” motion data can evoke a strong percept
Uses of Motion

- Estimating 3D structure
 - Directly from optic flow
 - Indirectly to create correspondences for SfM
- Segmenting objects based on motion cues
- Learning dynamical models
- Recognizing events and activities
- Improving video quality (motion stabilization)

Motion Estimation Techniques

- Direct methods
 - Directly recover image motion at each pixel from spatio-temporal image brightness variations
 - Dense motion fields, but sensitive to appearance variations
 - Suitable for video and when image motion is small
- Feature-based methods
 - Extract visual features (corners, textured areas) and track them over multiple frames
 - Sparse motion fields, but more robust tracking
 - Suitable when image motion is large (10s of pixels)

Topics of This Lecture

- Introduction to motion
 - Applications, uses
- Motion Field
 - Derivation
- Optical Flow
 - Brightness constancy constraint
 - Aperture problem
 - Lucas-Kanade flow
 - Iterative refinement
 - Global parametric motion
 - Coarse-to-fine estimation
- Motion segmentation
- KLT Feature Tracking

Motion Field

- The motion field is the projection of the 3D scene motion into the image

Motion Field and Parallax

- \(p(t) \) is a moving 3D point
- Velocity of scene point:
 \(V = \frac{dP}{dt} \)
- \(p(t) = (x(t), y(t)) \) is the projection of \(P \) in the image.
- Apparent velocity \(v \) in the image: given by components \(v_x = \frac{dx}{dt} \) and \(v_y = \frac{dy}{dt} \)
- These components are known as the motion field of the image.

Motion Field and Parallax

To find image velocity \(v \), differentiate \(p \) with respect to \(t \) (using quotient rule):

\[
\begin{align*}
 v_x &= \frac{fV_x - V_y}{Z} \\
 v_y &= \frac{fV_y - V_x}{Z} \\
 v &= \sqrt{v_x^2 + v_y^2}
\end{align*}
\]

- Image motion is a function of both the 3D motion \(V \) and the depth of the 3D point \(Z \).
Motion Field and Parallax

• Pure translation: \(\mathbf{V} \) is constant everywhere

\[
\begin{align*}
 v_x &= \frac{fV_x - V_p}{Z} \\
 v_y &= \frac{fV_y - V_p}{Z} \\
 v_z &= (fV_x, fV_y)
\end{align*}
\]

• \(v_z \) is nonzero:
 - Every motion vector points toward (or away from) \(v_0 \), the vanishing point of the translation direction.

• \(v_z \) is zero:
 - Motion is parallel to the image plane, all the motion vectors are parallel.
 - The length of the motion vectors is inversely proportional to the depth \(Z \).

Optical Flow

• Definition: optical flow is the apparent motion of brightness patterns in the image.

• Ideally, optical flow would be the same as the motion field.

• Have to be careful: apparent motion can be caused by lighting changes without any actual motion.
 - Think of a uniform rotating sphere under fixed lighting vs. a stationary sphere under moving illumination.
Estimating Optical Flow

- Given two subsequent frames, estimate the apparent motion field $u(x, y)$ and $v(x, y)$ between them.
- Key assumptions:
 - **Brightness constancy**: projection of the same point looks the same in every frame.
 - **Small motion**: points do not move very far.
 - **Spatial coherence**: points move like their neighbors.

The Brightness Constancy Constraint

$I_x \cdot u + I_y \cdot v + I_t = 0$

- How many equations and unknowns per pixel?
 - One equation, two unknowns
- Intuitively, what does this constraint mean?
 - The component of the flow perpendicular to the gradient (i.e., parallel to the edge) is unknown

If (u, v) satisfies the equation, so does $(u + u', v + v')$ if $\nabla I \cdot (u', v') = 0$

The Aperture Problem

The Barber Pole Illusion

[Link to Wikipedia article: Barberpole illusion](http://en.wikipedia.org/wiki/Barberpole_illusion)
The Barber Pole Illusion

Solving the Aperture Problem

- How to get more equations for a pixel?
- Spatial coherence constraint: pretend the pixel’s neighbors have the same \((u,v)\)
 - If we use a 5x5 window, that gives us 25 equations per pixel

\[
\begin{bmatrix}
I_x(p_1) & I_x(p_2) \\
I_y(p_1) & I_y(p_2) \\
I_x(p_{25}) & I_y(p_{25})
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix} =
\begin{bmatrix}
I_x(p_1) \\
I_y(p_2) \\
I_x(p_{25})
\end{bmatrix}
\]

Conditions for Solvability

- Optimal \((u,v)\) satisfies Lucas-Kanade equation

\[
\frac{\sum I_x I_x}{\sum I_x I_y} \begin{bmatrix} u \\ v \end{bmatrix} = -\frac{\sum I_y I_y}{\sum I_x I_y}
\]

- When is this solvable?
 - \(A^TA\) should be invertible.
 - \(A^TA\) entries should not be too small (noise).
 - \(A^TA\) should be well-conditioned.

Eigenvectors of \(A^TA\)

- Haven’t we seen an equation like this before?
- Recall the Harris corner detector: \(M = A^TA\) is the second moment matrix.
- The eigenvectors and eigenvalues of \(M\) relate to edge direction and magnitude.
 - The eigenvector associated with the larger eigenvalue points in the direction of fastest intensity change.
 - The other eigenvector is orthogonal to it.
Interpreting the Eigenvalues

- Classification of image points using eigenvalues of the second moment matrix:

\[\lambda_2 \text{ and } \lambda_3 \text{ are small} \]

\[\lambda_1 \text{ and } \lambda_2 \text{ are large, } \lambda_1 \approx \lambda_2 \]

\[\lambda_1 \gg \lambda_2 \]

"Corner"

"Edge"

"Flat" region

Slide credit: Kristen Grauman

Edge

- Gradients very large or very small
- Large \(\lambda_1 \), small \(\lambda_2 \)

\[\sum \nabla I(\nabla I)^T \]

Slide credit: SvetaLana Lazebnik

Low-Texture Region

- Gradients have small magnitude
- Small \(\lambda_1 \), small \(\lambda_2 \)

\[\sum \nabla I(\nabla I)^T \]

Slide credit: SvetaLana Lazebnik

High-Texture Region

- Gradients are different, large magnitude
- Large \(\lambda_1 \), large \(\lambda_2 \)

\[\sum \nabla I(\nabla I)^T \]

Slide credit: SvetaLana Lazebnik

Per-Pixel Estimation Procedure

- Let \(M = \sum (\nabla I)(\nabla I)^T \) and \(b = -\sum I \cdot I \cdot I \).
- Algorithm: At each pixel compute \(U \) by solving \(MU = b \).
- If is singular if all gradient vectors point in the same direction
 - E.g., along an edge
 - Trivially singular if the summation is over a single pixel
 - I.e., only normal flow is available (aperture problem)
- Corners and textured areas are OK

\[(\nabla I)^T A \]

Slide credit: Steve Seitz

Iterative Refinement

1. Estimate velocity at each pixel using one iteration of Lucas and Kanade estimation.

\[\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_y I_x & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum I_x I_1 \\ \sum I_y I_2 \end{bmatrix} \]

2. Warp one image toward the other using the estimated flow field.
 - (Easier said than done)

3. Refine estimate by repeating the process.
Optical Flow: Iterative Refinement

- **Initial guess:** $d_0 = 0$
- **Estimate:** $d_1 = d_0 + \hat{d}$

- **Estimate:** $d_2 = d_1 + \hat{d}$

(Using d for displacement here instead of u)

Some Implementation Issues:
- Warping is not easy (ensure that errors in warping are smaller than the estimate refinement).
- Warp one image, take derivatives of the other so you don’t need to re-compute the gradient after each iteration.
- Often useful to low-pass filter the images before motion estimation (for better derivative estimation, and linear approximations to image intensity).

Extension: Global Parametric Motion Models

- Translation: 2 unknowns
- Affine: 6 unknowns
- Perspective: 8 unknowns
- 3D rotation: 3 unknowns
Example: Affine Motion

\[u(x, y) = a_1 + a_2 x + a_3 y \]
\[v(x, y) = a_4 + a_5 x + a_6 y \]

- Substituting into the brightness constancy equation:
 \[I_x \cdot u + I_y \cdot v + I_z = 0 \]

Problem Cases in Lucas-Kanade

- The motion is large (larger than a pixel)
 - Iterative refinement, coarse-to-fine estimation
- A point does not move like its neighbors
 - Motion segmentation
- Brightness constancy does not hold
 - Do exhaustive neighborhood search with normalized correlation.

Dealing with Large Motions

Temporal Aliasing

- Temporal aliasing causes ambiguities in optical flow because images can have many pixels with the same intensity.
 - I.e., how do we know which 'correspondence' is correct?
 - To overcome aliasing: coarse-to-fine estimation.
Coarse-to-fine Optical Flow Estimation

- Gaussian pyramid of image 1
- Gaussian pyramid of image 2

- Image 2
- Image 1

- u=10 pixels
- u=5 pixels
- u=2.5 pixels
- u=1.25 pixels

Slide credit: Steve Seitz

Dense Optical Flow

- Dense measurements can be obtained by adding smoothness constraints.

- Color map

(c) Thomas Brox 2009

T. Brox, C. Bregler, J. Malik, Large displacement optical flow, CVPR'09, Miami, USA, June 2009.

Summary

- Motion field: 3D motions projected to 2D images; dependency on depth.
- Solving for motion with
 - Sparse feature matches
 - Dense optical flow
- Optical flow
 - Brightness constancy assumption
 - Aperture problem
 - Solution with spatial coherence assumption

References and Further Reading

- Here is the original paper by Lucas & Kanade

- And the original paper by Shi & Tomasi

- Read the story how optical flow was used for special effects in a number of recent movies
 - http://www.fxguide.com/article333.html