Computer Vision - Lecture 9

Subspace Representations for Recognition

25.11.2009

Bastian Leibe
RWTH Aachen
http://www.mmp.rwth-aachen.de/

leibe@umic.rwth-aachen.de
Course Outline

• Image Processing Basics
• Segmentation & Grouping
• Recognition
 ➢ Global Representations
 ➢ Subspace representations
• Object Categorization I
 ➢ Sliding Window based Object Detection
• Local Features & Matching
• Object Categorization II
 ➢ Part based Approaches
• 3D Reconstruction
• Motion and Tracking
Recap: Appearance-Based Recognition

- Basic assumption
 - Objects can be represented by a set of images ("appearances").
 - For recognition, it is sufficient to just compare the 2D appearances.
 - No 3D model is needed.

⇒ Fundamental paradigm shift in the 90’s
Recap: Recognition Using Histograms

- Histogram comparison

Test image

Known objects
Recap: Comparison Measures

- Vector space interpretation
 - Euclidean distance
 - Mahalanobis distance

- Statistical motivation
 - Chi-square
 - Bhattacharyya

- Information-theoretic motivation
 - Kullback-Leibler divergence, Jeffreys divergence

- Histogram motivation
 - Histogram intersection

- Ground distance
 - Earth Movers Distance (EMD)
Recap: Recognition Using Histograms

- **Simple algorithm**
 1. Build a set of histograms $H=\{h_i\}$ for each known object
 - More exactly, for each view of each object
 2. Build a histogram h_t for the test image.
 3. Compare h_t to each $h_i \in H$
 - Using a suitable comparison measure
 4. Select the object with the best matching score
 - Or reject the test image if no object is similar enough.

“Nearest-Neighbor” strategy

B. Leibe
Recap: Histogram Backprojection

- „Where in the image are the colors we’re looking for?“
 - Query: object with histogram M
 - Given: image with histogram I

- Compute the „ratio histogram“: $R_i = \min\left(\frac{M_i}{I_i}, 1\right)$
 - R reveals how important an object color is, relative to the current image.
 - Project value back into the image (i.e. replace the image values by the values of R that they index).
 - Convolve result image with a circular mask to find the object.
Recap: Multidimensional Representations

- Combination of several descriptors
 - Each descriptor is applied to the whole image.
 - Corresponding pixel values are combined into one feature vector.
 - Feature vectors are collected in multidimensional histogram.

\[
\begin{array}{c}
D_x \\
D_y \\
Lap
\end{array}
\]
Recap: Bayesian Recognition Algorithm

1. Build up histograms \(p(m_k | o_n) \) for each training object.
2. Sample the test image to obtain \(m_k, k \in K \).
 - Only small number of local samples necessary.
3. Compute the probabilities for each training object.

\[
\begin{align*}
 m_i & \quad \Rightarrow \quad p(o_n | m_i) \\
 m_j & \quad \Rightarrow \quad p(o_n | m_j) \\
 \vdots
\end{align*}
\]

\[
p(o_n | \text{Image}) = \frac{\prod_k p(m_k | o_n)p(o_n)}{\sum_i \prod_k p(m_k | o_i)p(o_i)}
\]

4. Select the object with the highest probability
 - Or reject the test image if no object accumulates sufficient probability.
Recap: Colored Derivatives

- Generalization: derivatives along
 - Y axis → intensity differences
 - C₁ axis → red-green differences
 - C₂ axis → blue-yellow differences

- Application:
 - Brand identification in video

[Hall & Crowley, 2000]
You’re Now Ready for First Applications…

- Histogram based recognition
- Line detection
- Circle detection
- Binary Segmentation
- Moment descriptors
- Skin color detection

Image Source: http://www.flickr.com/photos/angelsk/2806412807/
Demo Competition

- Design your own Computer Vision demo!
 - Based on the techniques from the lecture...
 - Topic is up to you - it should be fun!
 - Teams of up to 3 students
 - Demo day after the end of the semester
 - Will send around a poll for a suitable date...
 - Participation is optional (but it will be fun!)
 - Demos will count for up to 30 extra exercise points
 - (Small) prizes for best teams

If you have questions, we’ll be happy to give advice...
Topics of This Lecture

- **Subspace Methods for Recognition**
 - Motivation

- **Principal Component Analysis (PCA)**
 - Derivation
 - Object recognition with PCA
 - Eigenimages/Eigenfaces
 - Limitations

- **Fisher’s Linear Discriminant Analysis (FLD/LDA)**
 - Derivation
 - Fisherfaces for recognition
Recap: Appearance-Based Recognition

- Basic assumption
 - Objects can be represented by a set of images ("appearances").
 - For recognition, it is sufficient to just compare the 2D appearances.
 - No 3D model is needed.

\Rightarrow Represent objects by sets of global descriptors
Recap: Recognition Using Global Features

- E.g. histogram comparison
Representations for Recognition

- More generally, we want to obtain representations that are well-suited for
 - Recognizing a certain class of objects
 - Identifying individuals from that class (identification)

- How can we arrive at such a representation?

- Approach 1:
 - Come up with a brilliant idea and tweak it until it works.

- Can we do this more systematically?
Example: The Space of All Face Images

- When viewed as vectors of pixel values, face images are extremely high-dimensional.
 - 100x100 image = 10,000 dimensions
- However, relatively few 10,000-dimensional vectors correspond to valid face images.
- We want to effectively model the subspace of face images.
The Space of All Face Images

- We want to construct a low-dimensional linear subspace that best explains the variation in the set of face images.
Subspace Methods

- Images represented as points in a high-dim. vector space
- Valid images populate only a small fraction of the space
- Characterize subspace spanned by images

Image set \rightarrow Basis images \rightarrow Representation coefficients
Subspace Methods

- Today’s topics: PCA, FLD

Slide credit: Ales Leonardis
Topics of This Lecture

- Subspace Methods for Recognition
 - Motivation

- Principal Component Analysis (PCA)
 - Derivation
 - Object recognition with PCA
 - Eigenimages/Eigenfaces
 - Limitations

- Fisher’s Linear Discriminant Analysis (FLD/LDA)
 - Derivation
 - Fisherfaces for recognition
Principal Component Analysis

- Given: N data points x_1, \ldots, x_N in \mathbb{R}^d
- We want to find a new set of features that are linear combinations of original ones:

 $$u(x_i) = u^\top(x_i - \mu)$$

(μ: mean of data points)

- What unit vector u in \mathbb{R}^d captures the most variance of the data?
Principal Component Analysis

- Direction that maximizes the variance of the projected data:

\[
\text{var}(u) = \frac{1}{N} \sum_{i=1}^{N} u^T (x_i - \mu)(u^T (x_i - \mu))^T
\]

Projection of data point

\[
= \frac{1}{N} u^T \left[\sum_{i=1}^{N} (x_i - \mu)(x_i - \mu)^T \right] u
\]

Covariance matrix of data

\[
= \frac{1}{N} u^T \Sigma u
\]

- The direction that maximizes the variance is the eigenvector associated with the largest eigenvalue of \(\Sigma \).
Remember: Fitting a Gaussian

- Mean and covariance matrix of data define a Gaussian model
Interpretation of PCA

- Compute eigenvectors of covariance Σ.
- Eigenvectors: main directions
- Eigenvalue: variance along eigenvector

$\mathbf{u}_1, \mathbf{u}_2$

- Result: coordinate transform to best represent the variance of the data
Interpretation of PCA

- Now, suppose we want to represent the data using just a single dimension.
 - I.e., project it onto a single axis
 - What would be the best choice for this axis?
Interpretation of PCA

- Now, suppose we want to represent the data using just a single dimension.
 - i.e., project it onto a single axis
 - What would be the best choice for this axis?

- The first eigenvector gives us the best reconstruction.
 - Direction that retains most of the variance of the data.
Properties of PCA

- It can be shown that the mean square error between x_i and its reconstruction using only m principle eigenvectors is given by the expression:

$$\sum_{j=1}^{N} \lambda_j - \sum_{j=1}^{m} \lambda_j = \sum_{j=m+1}^{N} \lambda_j$$

- Interpretation
 - PCA minimizes reconstruction error
 - PCA maximizes variance of projection
 - Finds a more “natural” coordinate system for the sample data.

Cumulative influence of eigenvectors

90% of variance
Projection and Reconstruction

- An n-pixel image $x \in \mathbb{R}^n$ can be projected to a low-dimensional feature space $y \in \mathbb{R}^m$ by
 $$ y = Ux $$

- From $y \in \mathbb{R}^m$, the reconstruction of the point is U^Ty

- The error of the reconstruction is
 $$ \| x - U^T U x \| $$
Example: Object Representation
Principal Component Analysis

Get a compact representation by keeping only the first \(k \) eigenvectors!
Object Detection by Distance TO Eigenspace

- Scan a window ω over the image and classify the window as object or non-object as follows:
 - Project window to subspace and reconstruct as earlier.
 - Compute the distance between ω and the reconstruction (reprojection error).
 - Local minima of distance over all image locations \Rightarrow object locations
 - Repeat at different scales
 - Possibly normalize window intensity such that $|\omega|=1$.

Slide credit: Peter Belhumeur
Eigenfaces: Key Idea

- Assume that most face images lie on a low-dimensional subspace determined by the first k ($k < d$) directions of maximum variance.
- Use PCA to determine the vectors u_1, \ldots, u_k that span that subspace:

$$x \approx \mu + w_1u_1 + w_2u_2 + \ldots + w_ku_k$$

- Represent each face using its “face space” coordinates (w_1, \ldots, w_k)
- Perform nearest-neighbor recognition in “face space”

Eigenfaces Example

- Training images x_1, \ldots, x_N
Eigenfaces Example

Top eigenvectors: u_1, \ldots, u_k

Mean: μ

Slide credit: Svetlana Lazebnik
Eigenface Example 2 (Better Alignment)
Eigenfaces Example

- Face x in “face space” coordinates:

$$x \to \begin{bmatrix} u_1^T(x - \mu), \ldots, u_k^T(x - \mu) \end{bmatrix} = \begin{bmatrix} w_1, \ldots, w_k \end{bmatrix}$$
Eigenfaces Example

- Face x in “face space” coordinates:

$$x \rightarrow [u_1^T(x - \mu), \ldots, u_k^T(x - \mu)]$$

$$= w_1, \ldots, w_k$$

- Reconstruction:

$$x = \mu + w_1u_1 + w_2u_2 + w_3u_3 + w_4u_4 + \ldots$$

Slide credit: Svetlana Lazebnik
Recognition with Eigenspaces

• Process labeled training images:
 - Find mean μ and covariance matrix Σ
 - Find k principal components (eigenvectors of Σ) u_1, \ldots, u_k
 - Project each training image x_i onto subspace spanned by principal components:
 $$(w_{i1}, \ldots, w_{ik}) = (u_1^T(x_i - \mu), \ldots, u_k^T(x_i - \mu))$$

• Given novel image x:
 - Project onto subspace:
 $$(w_1, \ldots, w_k) = (u_1^T(x - \mu), \ldots, u_k^T(x - \mu))$$
 - Optional: check reconstruction error $x - \hat{x}$ to determine whether image is really a face
 - Classify as closest training face in k-dimensional subspace
Obj. Identification by Distance IN Eigenspace

- Objects are represented as coordinates in an n-dim. eigenspace.
- Example:
 - 3D space with points representing individual objects or a manifold representing parametric eigenspace (e.g., orientation, pose, illumination).

- Estimate parameters by finding the NN in the eigenspace.
Parametric Eigenspace

- Object identification / pose estimation
 - Find nearest neighbor in eigenspace [Murase & Nayar, IJCV’95]
Applications: Recognition, Pose Estimation

H. Murase and S. Nayar, Visual learning and recognition of 3-d objects from appearance, IJCV 1995
Applications: Visual Inspection

B. Leibe
Important Footnote

• Don’t really implement PCA this way!
 - Why?

1. How big is Σ?
 - $n \times n$, where n is the number of pixels in an image!
 - However, we only have m training examples, typically $m \ll n$.
 \Rightarrow Σ will at most have rank m!

2. You only need the first k eigenvectors
Singular Value Decomposition (SVD)

- Any $m \times n$ matrix A may be factored such that
 \[A = U \Sigma V^T \]

 \[[m \times n] = [m \times m][m \times n][n \times n] \]

- **U: $m \times m$, orthogonal matrix**
 - Columns of U are the eigenvectors of AA^T

- **V: $n \times n$, orthogonal matrix**
 - Columns are the eigenvectors of A^TA

- **Σ: $m \times n$, diagonal with non-negative entries ($\sigma_1, \sigma_2, \ldots, \sigma_s$)** with $s = \min(m,n)$ are called the singular values.
 - Singular values are the square roots of the eigenvalues of both AA^T and A^TA. **Columns of U are corresponding eigenvectors!**
 - Result of SVD algorithm: $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_s$
SVD Properties

• Matlab: \([u \ s \ v] = \text{svd}(A)\)
 - where \(A = u^*s*v'\)

• \(r = \text{rank}(A)\)
 - Number of non-zero singular values

• \(U, V\) give us orthonormal bases for the subspaces of \(A\)
 - first \(r\) columns of \(U\): column space of \(A\)
 - last \(m-r\) columns of \(U\): left nullspace of \(A\)
 - first \(r\) columns of \(V\): row space of \(A\)
 - last \(n-r\) columns of \(V\): nullspace of \(A\)

• For \(d \leq r\), the first \(d\) columns of \(U\) provide the best \(d\)-dimensional basis for columns of \(A\) in least-squares sense
Performing PCA with SVD

• Singular values of A are the square roots of eigenvalues of both AA^T and A^TA.
 - Columns of U are the corresponding eigenvectors.

• And
 $$
 \sum_{i=1}^{n} a_i a_i^T = [a_1 \ldots a_n][a_1 \ldots a_n]^T = AA^T
 $$

• Covariance matrix
 $$
 \Sigma = \frac{1}{n} \sum_{i=1}^{n} (\bar{x}_i - \bar{\mu})(\bar{x}_i - \bar{\mu})^T
 $$

• So, ignoring the factor $1/n$, subtract mean image μ from each input image, create data matrix, and perform (thin) SVD on the data matrix.
Thin SVD

- Any m by n matrix A may be factored such that
 $$A = U \Sigma V^T$$

- If $m > n$, then one can view Σ as:
 $$\begin{bmatrix}
 \Sigma' \\
 0
 \end{bmatrix}$$

- Where $\Sigma' = \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_s)$ with $s = \min(m, n)$, and lower matrix is $(n-m \text{ by } m)$ of zeros.

- Alternatively, you can write:
 $$A = U' \Sigma' V^T$$

- In Matlab, thin SVD is: $[U \ S \ V] = \text{svds}(A, k)$

This is what you should use!

Slide credit: Peter Belhumeur
Limitations

- Global appearance method: not robust to misalignment, background variation

- Easy fix (with considerable manual overhead)
 - Need to align the training examples
Limitations

- PCA assumes that the data has a Gaussian distribution (mean μ, covariance matrix Σ)

The shape of this dataset is not well described by its principal components

Slide credit: Svetlana Lazebnik
Limitations

- The direction of maximum variance is not always good for classification
Topics of This Lecture

- Subspace Methods for Recognition
 - Motivation
- Principal Component Analysis (PCA)
 - Derivation
 - Object recognition with PCA
 - Eigenimages/Eigenfaces
 - Limitations
- Fisher’s Linear Discriminant Analysis (FLD/LDA)
 - Derivation
 - Fisherfaces for recognition

B. Leibe
Restrictions of PCA

- PCA minimizes projection error

- PCA is „unsupervised“, no information on classes is used
- Discriminating information might be lost
Fischer’s Linear Discriminant Analysis (FLD)

- FLD is an enhancement to PCA
 - Constructs a discriminant subspace that minimizes the scatter between images of the same class and maximizes the scatter between different class images
 - Also sometimes called LDA...

Slide adapted from Peter Belhumeur

B. Leibe
Mean Images

- Let X_1, X_2, \ldots, X_k be the classes in the database and let each class X_i, $i = 1, 2, \ldots, k$ have N_i images x_j, $j = 1, 2, \ldots, k$.

- We compute the mean image μ_i of each class X_i as:
 $$\mu_i = \frac{1}{k} \sum_{j=1}^{N_i} x_j$$

- Now, the mean image μ of all the classes in the database can be calculated as:
 $$\mu = \frac{1}{C} \sum_{i=1}^{k} \mu_i$$
Scatter Matrices

• We calculate the **within-class** scatter matrix as:

\[
S_W = \sum_{i=1}^{k} \sum_{x_j \in X_i} (x_j - \mu_i)(x_j - \mu_i)^T
\]

• We calculate the **between-class** scatter matrix as:

\[
S_B = \sum_{i=1}^{k} N_i (\mu_i - \mu)(\mu_i - \mu)^T
\]
Visualization

Good separation

S_B

$S_W = S_1 + S_2$

S_1

S_2

Slide credit: Ales Leonardis
Fisher’s Linear Discriminant Analysis (FLD)

- Maximize distance between classes
- Minimize distance within a class

Criterion: \[J(w) = \frac{w^T S_B w}{w^T S_W w} \]

- The optimal solution for \(w \) can be obtained as:
 \[w \propto S_W^{-1}(\mu_2 - \mu_1) \]

- Classification function:
 \[y(x) = w^T x + w_0 \]
 \[\begin{align*}
 y(x) &< 0 & \text{Class 1} \\
 y(x) &\geq 0 & \text{Class 2}
 \end{align*} \]
Multiple Discriminant Analysis

- Generalization to K classes

$$J(W) = \frac{|W^T S_B W|}{|W^T S_W W|}$$

where

$$W = [w_1, \ldots, w_K] \quad \mu = \frac{1}{N} \sum_{n=1}^{N} x_n = \frac{1}{N} \sum_{k=1}^{K} N_k \mu_k$$

$$S_B = \sum_{k=1}^{K} N_k (\mu_k - \mu)(\mu_k - \mu)^T$$

$$S_W = \sum_{k=1}^{K} \sum_{n \in C_k} (x_n - \mu_k)(x_n - \mu_k)^T$$

B. Leibe
Maximizing $J(W)$

- Generalized eigenvalue problem

 $$J(W) = \frac{|W^T S_B W|}{|W^T S_W W|}$$

 - The columns of the optimal W are the eigenvectors corresponding to the largest eigenvectors of

 $$S_B w_i = \lambda_i S_W w_i$$

 - Defining $v = S_B^{\frac{1}{2}} w$, we get

 $$S_B^{\frac{1}{2}} S_W^{-1} S_B^{\frac{1}{2}} v = \lambda v$$

 which is a regular eigenvalue problem.

 \Rightarrow Solve to get eigenvectors of v, then from that of w.

- For the K-class case we obtain (at most) $K-1$ projections.
 - (i.e. eigenvectors corresponding to non-zero eigenvalues.)
Face Recognition Difficulty: Lighting

- The same person with the same facial expression, and seen from the same viewpoint, can appear dramatically different when light sources illuminate the face from different directions.
Application: Fisherfaces

- **Idea:**
 - Using Fisher’s linear discriminant to find class-specific linear projections that compensate for lighting/facial expression.

- **Singularity problem**
 - The within-class scatter is always singular for face recognition, since #training images << #pixels
 - This problem is overcome by applying PCA first

\[W_{opt}^T = W_{fld}^T U_{pca}^T \]

where

\[U_{pca} = \arg\max_U |U^T S_T U|, \quad S_T = S_B + S_W \]

\[W_{fld} = \arg\max_W \frac{|W^T U_{pca}^T S_B U_{pca} W|}{|W^T U_{pca}^T S_W U_{pca} W|} \]

Slide credit: Peter Belhumeur

B. Leibe

[Belhumeur et.al. 1997]
Fisherfaces: Experiments

- Variation in lighting
Fisherfaces: Experiments

Subsets 1 to 5 of face images are displayed, with each subset showing variations in facial expressions and lighting conditions.
Fisherfaces: Experimental Results

Error Rate (%)

Subset 1 Subset 2 Subset 3

Lighting Direction Subset

- Eigenface (10)
- Eigenface (10) w/o first 3
- Correlation
- Linear Subspace
- Fisherface

Slide credit: Peter Belhumeur

B. Leibe

[Belhumeur et al. 1997]
Fisherfaces: Experiments

- Variation in facial expression, eye wear, lighting
Fisherfaces: Experimental Results

![Graph showing error rates for different lighting direction subsets and methods.](image)

Slide credit: Peter Belhumeur

B. Leibe

[Belhumeur et.al. 1997]
Example Application: Fisherfaces

- Visual discrimination task
 - Training data:
 - C_1: Subjects with glasses
 - C_2: Subjects without glasses
 - Test:
 - glasses?

Take each image as a vector of pixel values and apply FLD...

Image source: Yale Face Database
Fisherfaces: Interpretability

- Example Fisherface for recognition “Glasses/NoGlasses”
References and Further Reading

- Background information on PCA/FLD can be found in Chapter 22.3 of
 D. Forsyth, J. Ponce,
 Computer Vision - A Modern Approach.
 Prentice Hall, 2003

- Important Papers (available on webpage)
 - M. Turk, A. Pentland
eigenfaces for Recognition
 - P.N. Belhumeur, J.P. Hespanha, D.J. Kriegman
 Eigenfaces vs. Fisherfaces: Recognition Using Class Specific