Computer Vision - Lecture 12

Object Recognition with Local Features

Bastian Leibe
RWTH Aachen
http://www.mmp.rwth-aachen.de
leibe@umic.rwth-aachen.de
Course Outline

• Image Processing Basics
• Segmentation & Grouping
• Object Recognition
• Object Categorization I
 - Sliding Window based Object Detection
• Local Features & Matching
 - Local Features - Detection and Description
 - Recognition with Local Features
• Object Categorization II
 - Part based Approaches
• 3D Reconstruction
• Motion and Tracking
Recap: Local Feature Matching Outline

1. Find a set of distinctive keypoints
2. Define a region around each keypoint
3. Extract and normalize the region content
4. Compute a local descriptor from the normalized region
5. Match local descriptors

\[d(f_A, f_B) < T \]
Recap: Requirements for Local Features

- **Problem 1:**
 - Detect the same point *independently* in both images

- **Problem 2:**
 - For each point correctly recognize the corresponding one

We need a repeatable detector!

We need a reliable and distinctive descriptor!
Recap: Harris Detector [Harris88]

- Compute second moment matrix (autocorrelation matrix)

\[
M(\sigma_I, \sigma_D) = g(\sigma_I)^* \begin{bmatrix}
I_x^2(\sigma_D) & I_xI_y(\sigma_D) \\
I_xI_y(\sigma_D) & I_y^2(\sigma_D)
\end{bmatrix}
\]

1. Image derivatives

2. Square of derivatives

3. Gaussian filter \(g(\sigma_I)\)

4. Cornerness function - two strong eigenvalues

\[
R = \det[M(\sigma_I, \sigma_D)] - \alpha \left[\text{trace}(M(\sigma_I, \sigma_D))\right]^2 \\
= g(I_x^2)g(I_y^2) - [g(I_xI_y)]^2 - \alpha[g(I_x^2) + g(I_y^2)]^2
\]

5. Perform non-maximum suppression

Slide credit: Krystian Mikolajczyk

B. Leibe
Recap: Harris Detector Responses [Harris88]

Effect: A very precise corner detector.

Slide credit: Krystian Mikolajczyk
Recap: Hessian Detector [Beaudet78]

- Hessian determinant

\[
Hessian(I) = \begin{bmatrix}
I_{xx} & I_{xy} \\
I_{xy} & I_{yy}
\end{bmatrix}
\]

\[
\text{det}(Hessian(I)) = I_{xx}I_{yy} - I_{xy}^2
\]

In Matlab:

\[
I_{xx} \ast I_{yy} - (I_{xy})^2
\]

Slide credit: Krystian Mikolajczyk
Recap: Hessian Detector Responses [Beaudet78]

Effect: Responses mainly on corners and strongly textured areas.

Slide credit: Krystian Mikolajczyk
Recap: Automatic Scale Selection

- Function responses for increasing scale (scale signature)
Recap: Laplacian-of-Gaussian (LoG)

- **Interest points:**
 - Local maxima in scale space of Laplacian-of-Gaussian

\[L_{xx}(\sigma) + L_{yy}(\sigma) \]

\(\Rightarrow \text{List of } (x, y, \sigma) \)
Recap: LoG Detector Responses
Difference-of-Gaussian (DoG)

- We can efficiently approximate the Laplacian with a difference of Gaussians:

\[L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right) \]

(Laplacian)

\[\text{DoG} = G(x, y, k\sigma) - G(x, y, \sigma) \]

(Difference of Gaussians)

- Advantages?
 - No need to compute 2nd derivatives.
 - Gaussians are computed anyway, e.g. in a Gaussian pyramid.
Key point localization with DoG

- Detect maxima of difference-of-Gaussian (DoG) in scale space
- Then reject points with low contrast (threshold)
- Eliminate edge responses
 - Similar criterion as with Harris (eigenvalues of autocorrelation matrix)

Candidate keypoints: list of \((x,y,\sigma)\)

Slide credit: David Lowe
DoG - Efficient Computation

- Computation in Gaussian scale pyramid
Results: Lowe’s DoG
Combination: Harris-Laplace [Mikolajczyk ‘01]

1. Initialization: Multiscale Harris corner detection
2. Scale selection based on Laplacian
 - Take points that are simultaneous maxima of Harris and LoG.
 (same procedure with Hessian ⇒ Hessian-Laplace)
Summary: Scale Invariant Detection

- **Given:** Two images of the same scene with a large *scale difference* between them.
- **Goal:** Find *the same* interest points *independently* in each image.
- **Solution:** Search for *maxima* of suitable functions in *scale* and in *space* (over the image).

- **Two strategies**
 - Laplacian-of-Gaussian (LoG)
 - Difference-of-Gaussian (DoG) as a fast approximation
 - *These can be used either on their own, or in combinations with single-scale keypoint detectors (Harris, Hessian).*
Topics of This Lecture

• Local Feature Extraction (cont’d)
 ➢ Orientation normalization
 ➢ Affine Invariant Feature Extraction

• Local Descriptors
 ➢ SIFT
 ➢ Applications

• Recognition with Local Features
 ➢ Matching local features
 ➢ Finding consistent configurations
 ➢ Alignment: linear transformations
 ➢ Affine estimation
 ➢ Homography estimation
Rotation Invariant Descriptors

• Find local orientation
 - Dominant direction of gradient for the image patch

• Rotate patch according to this angle
 - This puts the patches into a canonical orientation.
Orientation Normalization: Computation

- Compute orientation histogram
- Select dominant orientation
- Normalize: rotate to fixed orientation

[Lowe, SIFT, 1999]
The Need for Invariance

- Up to now, we had invariance to
 - Translation
 - Scale
 - Rotation

- Not sufficient to match regions under viewpoint changes
 - For this, we need also affine adaptation
Affine Adaptation

- Problem:
 - Determine the characteristic shape of the region.
 - Assumption: shape can be described by “local affine frame”.

- Solution: iterative approach
 - Use a circular window to compute second moment matrix.
 - Compute eigenvectors to adapt the circle to an ellipse.
 - Recompute second moment matrix using new window and iterate...
Iterative Affine Adaptation

1. Detect keypoints, e.g. multi-scale Harris
2. Automatically select the scales
3. Adapt affine shape based on second order moment matrix
4. Refine point location

Slide credit: Tinne Tuytelaars
Affine Normalization/Deskewing

- **Steps**
 - Rotate the ellipse’s main axis to horizontal
 - Scale the x axis, such that it forms a circle

Slide credit: Tinne Tuytelaars
Affine Adaptation Example

Scale-invariant regions (blobs)

Slide credit: Svetlana Lazebnik
Affine Adaptation Example

Affine-adapted blobs

Slide credit: Svetlana Lazebnik
Summary: Affine-Inv. Feature Extraction

- Extract affine regions
- Normalize regions
- Eliminate rotational ambiguity
- Compare descriptors

Slide credit: Svetlana Lazebnik
Invariance vs. Covariance

- **Invariance:**
 \[\text{features} \left(\text{transform}(\text{image}) \right) = \text{features}(\text{image}) \]

- **Covariance:**
 \[\text{features} \left(\text{transform}(\text{image}) \right) = \text{transform} \left(\text{features}(\text{image}) \right) \]

Covariant detection \Rightarrow invariant description

Slide credit: Svetlana Lazebnik, David Lowe
Topics of This Lecture

- Local Feature Extraction (cont’d)
 - Orientation normalization
 - Affine Invariant Feature Extraction

- Local Descriptors
 - SIFT
 - Applications

- Recognition with Local Features
 - Matching local features
 - Finding consistent configurations
 - Alignment: linear transformations
 - Affine estimation
 - Homography estimation
Local Descriptors

• We know how to detect points
• Next question: How to describe them for matching?

Point descriptor should be:
1. Invariant
2. Distinctive

Slide credit: Kristen Grauman
Local Descriptors

- Simplest descriptor: list of intensities within a patch.
- What is this going to be invariant to?

Write regions as vectors

\[A \rightarrow a, \ B \rightarrow b \]
Feature Descriptors

- Disadvantage of patches as descriptors:
 - Small shifts can affect matching score a lot

- Solution: histograms

Slide credit: Svetlana Lazebnik
Feature Descriptors: SIFT

- **Scale Invariant Feature Transform**
- **Descriptor computation:**
 - Divide patch into 4x4 sub-patches: 16 cells
 - Compute histogram of gradient orientations (8 reference angles) for all pixels inside each sub-patch
 - Resulting descriptor: $4 \times 4 \times 8 = 128$ dimensions

Overview: SIFT

- Extraordinarily robust matching technique
 - Can handle changes in viewpoint up to ~60 deg. out-of-plane rotation
 - Can handle significant changes in illumination
 - Sometimes even day vs. night (below)
 - Fast and efficient—can run in real time
 - Lots of code available
Working with SIFT Descriptors

- One image yields:
 - n 128-dimensional descriptors: each one is a histogram of the gradient orientations within a patch
 - $[n \times 128$ matrix$]$
 - n scale parameters specifying the size of each patch
 - $[n \times 1$ vector$]$
 - n orientation parameters specifying the angle of the patch
 - $[n \times 1$ vector$]$
 - n 2D points giving positions of the patches
 - $[n \times 2$ matrix$]$

Slide credit: Steve Seitz
Local Descriptors: SURF

• Fast approximation of SIFT idea
 ➢ Efficient computation by 2D box filters & integral images
 ⇒ 6 times faster than SIFT
 ➢ Equivalent quality for object identification
 ➢ http://www.vision.ee.ethz.ch/~surf

• GPU implementation available
 ➢ Feature extraction @ 100Hz
 (detector + descriptor, 640×480 img)
 ➢ http://homes.esat.kuleuven.be/~ncorneli/gpusurf/
You Can Try It At Home...

- For most local feature detectors, executables are available online:
 - http://robots.ox.ac.uk/~vgg/research/affine
 - http://www.cs.ubc.ca/~lowe/keypoints/
 - http://www.vision.ee.ethz.ch/~surf
Affine Covariant Features

Affine Covariant Region Detectors

Detector output

Format:
1.0
m
u_1 v_1 a_1 b_1 c_1

\vdots

u_m v_m a_m b_m c_m

output example:
img1.hess

Image with displayed regions

Parameters defining an affine region

u, v, a, b, c \quad \text{in} \quad \begin{bmatrix} x-u \\ y-v \end{bmatrix} + 2b \begin{bmatrix} x-u \\ y-v \end{bmatrix} + 2c \begin{bmatrix} x-u \\ y-v \end{bmatrix} = 1

with (0, 0) at image top left corner

Code

- provided by the authors, see publications for details and links to authors' web sites.

Linux binaries

Harris-Affine & Hessian-Affine

Example of use

prompt>./h_affine.in -hessaff -i img1.ppm -o img1.hessaff -thres 1000

prompt>./h_affine.in -hessaff -i img1.ppm -o img1.hessaff -thres 500

MSER - Maximaly stable extremal regions (also Windows)

Example of use

prompt>./mserr.in -t 2 -ms 2 -i img1.ppm -o img1.mser

Displaying 1

IHR - Intensity extremum based detector

Example of use

prompt>./ihr.in img1.ppm img1.thr -scalefactor 1.0

Displaying 1

EDR - Edge based detector

Example of use

prompt>./edr.in img1.ppm img1.edr

Displaying 1

Saliency region detector

Example of use

prompt>./saliency.in img1.ppm img1.sali

Displaying 1

http://wwwrobots.ox.ac.uk/~vgg/research/affine/detectors.html#binaries
Topics of This Lecture

- Local Feature Extraction (cont’d)
 - Orientation normalization
 - Affine Invariant Feature Extraction

- Local Descriptors
 - SIFT
 - Applications

- Recognition with Local Features
 - Matching local features
 - Finding consistent configurations
 - Alignment: linear transformations
 - Affine estimation
 - Homography estimation
Applications of Local Invariant Features

- Wide baseline stereo
- Motion tracking
- Panoramas
- Mobile robot navigation
- 3D reconstruction
- Recognition
 - Specific objects
 - Textures
 - Categories
- ...

Slide credit: Kristen Grauman
Wide-Baseline Stereo

Image from T. Tuytelaars ECCV 2006 tutorial
Automatic Mosaicing

[Brown & Lowe, ICCV’03]
Panorama Stitching

(a) Matier data set (7 images)

(b) Matier final stitch

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

[Brown, Szeliski, and Winder, 2005]
Recognition of Specific Objects, Scenes

Schmid and Mohr 1997

Sivic and Zisserman, 2003

Rothganger et al. 2003

Lowe 2002

Slide credit: Kristen Grauman
Recognition of Categories

Constellation model

Bags of words

<table>
<thead>
<tr>
<th>Database</th>
<th>Sample cluster #1</th>
<th>Sample cluster #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airplanes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motorbikes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild Cats</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bicycles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>People</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Weber et al. (2000)
Fergus et al. (2003)

Csurka et al. (2004)
Dorko & Schmid (2005)
Sivic et al. (2005)
Lazebnik et al. (2006), ...

Slide credit: Svetlana Lazebnik
Value of Local Features

• Advantages
 - Critical to find distinctive and repeatable local regions for multi-view matching.
 - Complexity reduction via selection of distinctive points.
 - Describe images, objects, parts without requiring segmentation; robustness to clutter & occlusion.
 - Robustness: similar descriptors in spite of moderate view changes, noise, blur, etc.

• How can we use local features for such applications?
 - This week: matching and recognition
Topics of This Lecture

- Local Feature Extraction (cont’d)
 - Orientation normalization
 - Affine Invariant Feature Extraction

- Local Descriptors
 - SIFT
 - Applications

- Recognition with Local Features
 - Matching local features
 - Finding consistent configurations
 - Alignment: linear transformations
 - Affine estimation
 - Homography estimation
Recognition with Local Features

- Image content is transformed into local features that are invariant to translation, rotation, and scale
- Goal: Verify if they belong to a consistent configuration

Local Features, e.g. SIFT

Slide credit: David Lowe
Warping vs. Alignment

Warping: Given a source image and a transformation, what does the transformed output look like?

Alignment: Given two images with corresponding features, what is the transformation between them?

Slide credit: Kristen Grauman
Perceptual and Sensory Augmented Computing

Parametric (Global) Warping

Transformation T is a coordinate-changing machine:

$p' = T(p)$

- **What does it mean that T is global?**
 - It’s the same for any point p
 - It can be described by just a few numbers (parameters)

- **Let’s represent T as a matrix:**

 \[
 \begin{bmatrix}
 x' \\
 y'
 \end{bmatrix} = \begin{bmatrix}
 x \\
 y
 \end{bmatrix} M
 \]

Slide credit: Alexej Efros
What Can be Represented by a 2×2 Matrix?

- **2D Scaling?**

 \[
 x' = s_x \times x \\
 y' = s_y \times y
 \]

- **2D Rotation around (0,0)?**

 \[
 x' = \cos \theta \times x - \sin \theta \times y \\
 y' = \sin \theta \times x + \cos \theta \times y
 \]

- **2D Shearing?**

 \[
 x' = x + s_{h_x} \times y \\
 y' = s_{h_y} \times x + y
 \]
What Can be Represented by a 2×2 Matrix?

- **2D Mirror about y axis?**
 \[
 x' = -x \\
 y' = y
 \]
 \[
 \begin{bmatrix}
 x' \\
 y'
 \end{bmatrix} = \begin{bmatrix}
 -1 & 0 \\
 0 & 1
 \end{bmatrix} \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 \]

- **2D Mirror over (0,0)?**
 \[
 x' = -x \\
 y' = -y
 \]
 \[
 \begin{bmatrix}
 x' \\
 y'
 \end{bmatrix} = \begin{bmatrix}
 -1 & 0 \\
 0 & -1
 \end{bmatrix} \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 \]

- **2D Translation?**
 \[
 x' = x + t_x \\
 y' = y + t_y
 \]
 NO!
2D Linear Transforms

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
\]

• Only linear 2D transformations can be represented with a 2x2 matrix.
• Linear transformations are combinations of ...
 - Scale,
 - Rotation,
 - Shear, and
 - Mirror
Homogeneous Coordinates

- Q: How can we represent translation as a 3×3 matrix using homogeneous coordinates?

\[
\begin{align*}
x' &= x + t_x \\
y' &= y + t_y
\end{align*}
\]

- A: Using the rightmost column:

\[
\text{Translation} = \begin{bmatrix}
1 & 0 & t_x \\
0 & 1 & t_y \\
0 & 0 & 1
\end{bmatrix}
\]
Basic 2D Transformations

- Basic 2D transformations as 3x3 matrices

\[
\begin{bmatrix}
x' \\
y' \\
1
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & t_x \\
0 & 1 & t_y \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]
Translation

\[
\begin{bmatrix}
x' \\
y' \\
1
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 \\
0 & s_x & 0 \\
0 & 0 & s_y
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]
Scaling

\[
\begin{bmatrix}
x' \\
y' \\
1
\end{bmatrix} =
\begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]
Rotation

\[
\begin{bmatrix}
x' \\
y' \\
1
\end{bmatrix} =
\begin{bmatrix}
1 & sh_x & 0 \\
sh_y & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]
Shearing
2D Affine Transformations

\[
\begin{bmatrix}
 x' \\
 y' \\
 w
\end{bmatrix}
= \begin{bmatrix}
 a & b & c \\
 d & e & f \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 w
\end{bmatrix}
\]

- **Affine transformations** are combinations of ...
 - Linear transformations, and
 - Translations
- **Parallel lines remain parallel**
Projective Transformations

\[
\begin{bmatrix}
 x' \\
y' \\
w'
\end{bmatrix} =
\begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
w
\end{bmatrix}
\]

- **Projective transformations:**
 - Affine transformations, and
 - Projective warps

- Parallel lines do not necessarily remain parallel
Alignment Problem

- We have previously considered how to fit a model to image evidence
 - e.g., a line to edge points
- In alignment, we will fit the parameters of some transformation according to a set of matching feature pairs ("correspondences").
Let’s Start with Affine Transformations

- Simple fitting procedure (linear least squares)
- Approximates viewpoint changes for roughly planar objects and roughly orthographic cameras
- Can be used to initialize fitting for more complex models
Fitting an Affine Transformation

- Affine model approximates perspective projection of planar objects

Image source: David Lowe
Fitting an Affine Transformation

- Assuming we know the correspondences, how do we get the transformation?

\[
\begin{bmatrix}
 x'_i \\
 y'_i
\end{bmatrix} =
\begin{bmatrix}
m_1 & m_2 \\
m_3 & m_4
\end{bmatrix}
\begin{bmatrix}
x_i \\
y_i
\end{bmatrix} +
\begin{bmatrix}
t_1 \\
t_2
\end{bmatrix}
\]
Recall: Least Squares Estimation

- Set of data points: \((X_1, X'_1), (X_2, X'_2), (X_3, X'_3)\)
- Goal: a linear function to predict \(X\)'s from \(X\)s:
 \[Xa + b = X'\]
- We want to find \(a\) and \(b\).
- How many \((X, X')\) pairs do we need?
 \[X_1a + b = X'_1\]
 \[X_2a + b = X'_2\]
- What if the data is noisy?
 \[
 \begin{bmatrix}
 X_1 & 1 \\
 X_2 & 1 \\
 X_3 & 1 \\
 \vdots & \vdots \\
 \end{bmatrix}
 \begin{bmatrix}
 a \\
 b \\
 \vdots \\
 \end{bmatrix}
 =
 \begin{bmatrix}
 X'_1 \\
 X'_2 \\
 X'_3 \\
 \vdots \\
 \end{bmatrix}
 \]
 Overconstrained problem
 \[
 \min ||Ax - B||^2
 \]
 \[\Rightarrow \text{Least-squares minimization}\]

Matlab:
\[x = A \backslash B\]
Fitting an Affine Transformation

- Assuming we know the correspondences, how do we get the transformation?

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x_i \\
 y_i \end{bmatrix} + \begin{bmatrix} t_1 \\
 t_2 \end{bmatrix}
\]

B. Leibe
Fitting an Affine Transformation

\[
\begin{bmatrix}
\ldots \\
 x_i & y_i & 0 & 0 & 1 & 0 \\
 0 & 0 & x_i & y_i & 0 & 1 \\
 \ldots \\
\end{bmatrix}
\begin{bmatrix}
 m_1 \\
 m_2 \\
 m_3 \\
 m_4 \\
 t_1 \\
 t_2 \\
\end{bmatrix}
= \begin{bmatrix}
 \ldots \\
 x'_i \\
 y'_i \\
 \ldots \\
\end{bmatrix}
\]

- How many matches (correspondence pairs) do we need to solve for the transformation parameters?
- Once we have solved for the parameters, how do we compute the coordinates of the corresponding point for \((x_{new}, y_{new})\)?
Homography

• A projective transform is a mapping between any two perspective projections with the same center of projection.
 ➢ I.e. two planes in 3D along the same sight ray

• Properties
 ➢ Rectangle should map to arbitrary quadrilateral
 ➢ Parallel lines aren’t
 ➢ but must preserve straight lines

• This is called a **homography**

\[
\begin{bmatrix}
w x' \\
w y' \\
w \\
1
\end{bmatrix} =
\begin{bmatrix}
* & * & * \\
* & * & * \\
* & * & * \\
1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
l
\end{bmatrix}
\]

Slide adapted from Alexej Efros
Homography

- A projective transform is a mapping between any two perspective projections with the same center of projection.
 - I.e. two planes in 3D along the same sight ray

- Properties
 - Rectangle should map to arbitrary quadrilateral
 - Parallel lines aren’t
 - But must preserve straight lines

- This is called a homography

\[
\begin{bmatrix}
wx' \\
wy' \\
w \\
p'
\end{bmatrix} = \begin{bmatrix}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & H \\
1 & 1 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
p
\end{bmatrix}
\]

Set scale factor to 1 ⇒ 8 parameters left.
Fitting a Homography

- Estimating the transformation

\[
\begin{bmatrix}
 x' \\
 y' \\
 z'
\end{bmatrix} =
\begin{bmatrix}
 h_{11} & h_{12} & h_{13} \\
 h_{21} & h_{22} & h_{23} \\
 h_{31} & h_{32} & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

Image coordinates

\[
\begin{bmatrix}
 x'' \\
 y'' \\
 1
\end{bmatrix} = \frac{1}{z'}
\begin{bmatrix}
 x' \\
 y' \\
 z'
\end{bmatrix}
\]

Matrix notation

\[
x' = Hx \\
x'' = \frac{1}{z'} x'
\]

Slide credit: Krystian Mikolajczyk
Fitting a Homography

- Estimating the transformation

Homogenous coordinates

\[
\begin{bmatrix}
 x' \\
 y' \\
 z'
\end{bmatrix} =
\begin{bmatrix}
 h_{11} & h_{12} & h_{13} \\
 h_{21} & h_{22} & h_{23} \\
 h_{31} & h_{32} & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
\]

Image coordinates

\[
\begin{bmatrix}
x'' \\
y'' \\
z'
\end{bmatrix} = \frac{1}{z'}
\begin{bmatrix}
x' \\
y' \\
z'
\end{bmatrix}
\]

Matrix notation

\[
x' = Hx
\]

\[
x'' = \frac{1}{z'} x'
\]
Fitting a Homography

- Estimating the transformation

\[x' = Hx \]
\[x'' = \frac{1}{z'} x' \]

Homogenous coordinates

\[
\begin{bmatrix}
 x' \\
 y' \\
 z'
\end{bmatrix} =
\begin{bmatrix}
 h_{11} & h_{12} & h_{13} \\
 h_{21} & h_{22} & h_{23} \\
 h_{31} & h_{32} & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

Image coordinates

Slide credit: Krystian Mikolajczyk
Fitting a Homography

- Estimating the transformation

- Homogenous coordinates

\[
\begin{bmatrix}
 x' \\
 y' \\
 z'
\end{bmatrix} =
\begin{bmatrix}
 h_{11} & h_{12} & h_{13} \\
 h_{21} & h_{22} & h_{23} \\
 h_{31} & h_{32} & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

- Image coordinates

\[
\begin{bmatrix}
 x'' \\
 y'' \\
 1
\end{bmatrix} = \frac{1}{z'}
\begin{bmatrix}
 x' \\
 y' \\
 z'
\end{bmatrix}
\]

- Matrix notation

\[
x' = Hx
\]

\[
x'' = \frac{1}{z'} x'
\]

\[
\begin{aligned}
x_{A_i} &= \frac{h_{11} x_{B_i} + h_{12} y_{B_i} + h_{13}}{h_{31} x_{B_i} + h_{32} y_{B_i} + 1} \\
y_{A_i} &= \frac{h_{21} x_{B_i} + h_{22} y_{B_i} + h_{23}}{h_{31} x_{B_i} + h_{32} y_{B_i} + 1}
\end{aligned}
\]

Slide credit: Krystian Mikolajczyk
Fitting a Homography

- Estimating the transformation

\[x_{A_i} = \frac{h_{11} x_{B_i} + h_{12} y_{B_i} + h_{13}}{h_{31} x_{B_i} + h_{32} y_{B_i} + 1} \]

\[y_{A_i} = \frac{h_{21} x_{B_i} + h_{22} y_{B_i} + h_{23}}{h_{31} x_{B_i} + h_{32} y_{B_i} + 1} \]

Image coordinates

Homogenous coordinates
Fitting a Homography

- Estimating the transformation

\[
\begin{align*}
\mathbf{x}_{A_i} & \leftrightarrow \mathbf{x}_{B_i} \\
\mathbf{x}_{A_2} & \leftrightarrow \mathbf{x}_{B_2} \\
\mathbf{x}_{A_3} & \leftrightarrow \mathbf{x}_{B_3} \\
\vdots & \quad \vdots \\
\end{align*}
\]

Homogenous coordinates

\[
\begin{align*}
x_{A_i} &= \frac{h_{11} x_{B_i} + h_{12} y_{B_i} + h_{13}}{h_{31} x_{B_i} + h_{32} y_{B_i} + 1} \\
y_{A_i} &= \frac{h_{21} x_{B_i} + h_{22} y_{B_i} + h_{23}}{h_{31} x_{B_i} + h_{32} y_{B_i} + 1} \\
\end{align*}
\]

Image coordinates

\[
\begin{align*}
h_{11} x_{B_i} + h_{12} y_{B_i} + h_{13} - x_{A_i} h_{31} x_{B_i} - x_{A_i} h_{32} y_{B_i} - x_{A_i} &= 0 \\
h_{21} x_{B_i} + h_{22} y_{B_i} + h_{23} - y_{A_i} h_{31} x_{B_i} - y_{A_i} h_{32} y_{B_i} - y_{A_i} &= 0 \\
\end{align*}
\]

Slide credit: Krystian Mikolajczyk

B. Leibe
Fitting a Homography

- Estimating the transformation

\[
h_{11} x_{B_i} + h_{12} y_{B_i} + h_{13} - x_{A_i} h_{31} x_{B_i} - x_{A_i} h_{32} y_{B_i} - x_{A_i} = 0
\]
\[
h_{21} x_{B_i} + h_{22} y_{B_i} + h_{23} - y_{A_i} h_{31} x_{B_i} - y_{A_i} h_{32} y_{B_i} - y_{A_i} = 0
\]

\[
\begin{bmatrix}
 x_{B_i} & y_{B_i} & 1 & 0 & 0 & 0 & -x_{A_i} x_{B_i} & -x_{A_i} y_{B_i} & -x_{A_i} \\
 0 & 0 & 0 & x_{B_i} & y_{B_i} & 1 & -y_{A_i} x_{B_i} & -y_{A_i} y_{B_i} & -y_{A_i}
\end{bmatrix}
\begin{bmatrix}
 h_{11} \\
 h_{12} \\
 h_{13} \\
 h_{21} \\
 h_{22} \\
 h_{23} \\
 h_{31} \\
 h_{32} \\
 1
\end{bmatrix}
= \begin{bmatrix}
 0 \\
 0 \\
 0 \\
 \vdots
\end{bmatrix}
\]

\[Ah = 0\]
Fitting a Homography

- Estimating the transformation
- Solution:
 - Null-space vector of A
 - Corresponds to smallest eigenvector

$$Ah = 0$$

$$A = UDV^T = U \begin{bmatrix} d_{11} & \cdots & d_{19} \\ \vdots & \ddots & \vdots \\ d_{91} & \cdots & d_{99} \end{bmatrix} \begin{bmatrix} v_{11} & \cdots & v_{19} \\ \vdots & \ddots & \vdots \\ v_{91} & \cdots & v_{99} \end{bmatrix}^T$$

$$h = \begin{bmatrix} v_{19}, \cdots, v_{99} \\ v_{99} \end{bmatrix}$$

Minimizes least square error

Slide credit: Krystian Mikolajczyk
Image Warping with Homographies

Image plane in front

Black area where no pixel maps to

p

p'

Slide credit: Steve Seitz
Uses: Analyzing Patterns and Shapes

• What is the shape of the b/w floor pattern?
Analyzing Patterns and Shapes

From Martin Kemp *The Science of Art* (manual reconstruction)

Slide credit: Antonio Criminisi
Summary: Recognition by Alignment

• Basic matching algorithm
 1. Detect interest points in two images.
 2. Extract patches and compute a descriptor for each one.
 3. Compare one feature from image 1 to every feature in image 2 and select the nearest-neighbor pair.
 4. Repeat the above for each feature from image 1.
 5. Use the list of best pairs to estimate the transformation between images.

• Transformation estimation
 - Affine
 - Homography
Time for a Demo...

Automatic panorama stitching

B. Leibe
References and Further Reading

- More details on homography estimation can be found in Chapter 4.7 of
 - R. Hartley, A. Zisserman
 Multiple View Geometry in Computer Vision
 2nd Ed., Cambridge Univ. Press, 2004

- Details about the DoG detector and the SIFT descriptor can be found in
 - D. Lowe, *Distinctive image features from scale-invariant keypoints*,
 IJCV 60(2), pp. 91-110, 2004

- Try the available local feature detectors and descriptors
 - http://www.robots.ox.ac.uk/~vgg/research/affine/detectors.html#binaries