Recap: A General Point

- Equations of the form
 \[Ax = 0 \]
- How do we solve them? (always!)
 - Apply SVD
 \[A = U \Sigma V^T \]
 Singular values Singular vectors
 - Singular values of \(A \) = square roots of the eigenvalues of \(A^T A \).
 - The solution of \(Ax = 0 \) is the nullspace vector of \(A \).
 - This corresponds to the smallest singular vector of \(A \).

Recap: Camera Parameters

- Intrinsic parameters
 - Principal point coordinates
 - Focal length
 - Pixel magnification factors
 - Skew (non-rectangular pixels)
 - Radial distortion
- Extrinsic parameters
 - Rotation \(R \)
 - Translation \(t \)
 (both relative to world coordinate system)
- Camera projection matrix
 \[P = K[R|t] \]
 - General pinhole camera: 9 DoF
 - CCD Camera with square pixels: 10 DoF
 - General camera: 11 DoF

Recap: Calibrating a Camera

Goal

- Compute intrinsic and extrinsic parameters using observed camera data.

Main idea

- Place “calibration object” with known geometry in the scene
- Get correspondences
- Solve for mapping from scene to image: estimate \(P = P_{\text{int}} P_{\text{ext}} \)

Course Outline

- Image Processing Basics
- Segmentation & Grouping
- Object Recognition
- Local Features & Matching
- Object Categorization
- 3D Reconstruction
 - Epipolar Geometry and Stereo Basics
 - Camera calibration & Uncalibrated Reconstruction
 - Structure-from-Motion
- Motion and Tracking
Recap: Camera Calibration (DLT Algorithm)
\[
\begin{bmatrix}
0'
X_1'
X_2'
... \\
0'
X_1'
X_2'
\cdots
\end{bmatrix}
\begin{bmatrix}
0 \\
-\gamma_1X_1' \\
0 \\
-\gamma_2X_2' \\
\cdots \\
0 \\
-\gamma_1X_1' \\
0 \\
-\gamma_2X_2'
\end{bmatrix}
= \begin{bmatrix}
P_1 \\
P_2 \\
\cdots \\
P_2 \\
\cdots \\
P_2
\end{bmatrix}
\Rightarrow \text{Ap} = 0
\]
- P has 11 degrees of freedom.
- Two linearly independent equations per independent 2D/3D correspondence.
- Solution corresponds to homography estimation.
- Solution corresponds to smallest singular vector.
- 5 \frac{3}{2} correspondences needed for a minimal solution.

Recap: Triangulation - Linear Algebraic Approach
\[
\lambda_1x_1 = P_1x \\
x_1 \times P_1x = 0 \\
\lambda_2x_2 = P_2x \\
x_2 \times P_2x = 0
\]
- Two independent equations each in terms of three unknown entries of X.
- Stack equations and solve with SVD.
- This approach nicely generalizes to multiple cameras.

Recap: Epipolar Geometry - Calibrated Case
\[x \cdot (x' \times (Rx')) = 0 \quad \Rightarrow \quad x^TEx' = 0 \quad \text{with} \quad E = [t_1]R\]
Essential Matrix (Longuet-Higgins, 1981)

Recap: Epipolar Geometry - Uncalibrated Case
\[\hat{x}^TEx' = 0 \quad \Rightarrow \quad x^TFx' = 0 \quad \text{with} \quad F = K^{-1}EK^{-1}\]
Fundamental Matrix (Faugeras and Luong, 1992)

Recap: The Eight-Point Algorithm
\[x = (u, v, 1)^T, \quad x' = (u', v', 1)^T\]
\[
\begin{bmatrix}
F_{11} & F_{12} & F_{13} \\
F_{21} & F_{22} & F_{23} \\
F_{31} & F_{32} & F_{33}
\end{bmatrix}
\begin{bmatrix}
u \\
u' \\
1
\end{bmatrix}
= 0
\]
This minimizes: \[\sum_{i=0}^{N}(x_i^TFx_i')^2\]
Recap: Normalized Eight-Point Algorithm

1. Center the image data at the origin, and scale it so the mean squared distance between the origin and the data points is 2 pixels.
2. Use the eight-point algorithm to compute F from the normalized points.
3. Enforce the rank-2 constraint using SVD.
 \[F = U D V^T = U \begin{bmatrix} d_{11} & \cdots & \cdots & d_{16} \\ \vdots & \ddots & \cdots & \vdots \\ \vdots & \cdots & \ddots & \vdots \\ d_{16} & \cdots & \cdots & d_{11} \end{bmatrix} V^T \]
 Set d_{33} to zero and reconstruct F
4. Transform fundamental matrix back to original units: if T and T' are the normalizing transformations in the two images, then the fundamental matrix in original coordinates is $T^T F T'$.

Active Stereo with Structured Light

- Idea: Project "structured" light patterns onto the object
 - simplifies the correspondence problem
 - Allows us to use only one camera

Laser Scanning

- Optical triangulation
 - Project a single stripe of laser light
 - Scan it across the surface of the object
 - This is a very precise version of structured light scanning

Laser Scanned Models

The Digital Michelangelo Project

http://graphics.stanford.edu/projects/mich/
Laser Scanned Models

The Digital Michelangelo Project, Levoy et al.

Multi-Stripe Triangulation

- To go faster, project multiple stripes
- But which stripe is which?
- Answer #1: assume surface continuity

Multi-Stripe Triangulation

- To go faster, project multiple stripes
- But which stripe is which?
- Answer #2: colored stripes (or dots)

Active Stereo with Color Structured Light

Multi-Stripe Triangulation

- To go faster, project multiple stripes
- But which stripe is which?
- Answer #3: time-coded stripes
Time-Coded Light Patterns

- Assign each stripe a unique illumination code over time [Posdamer 82]

Better codes...

- Gray code
 - Neighbors only differ one bit

Poor Man’s Scanner

Slightly More Elaborate (But Still Cheap)

- Built-in IR projector
- IR camera for depth
- Regular camera for color

Under Everybody’s Christmas Tree...

Topics of This Lecture

- Structure from Motion (SfM)
 - Motivation
 - Ambiguity
- Affine SfM
 - Affine cameras
 - Affine factorization
 - Euclidean upgrade
 - Dealing with missing data
- Projective SfM
 - Two-camera case
 - Projective factorization
 - Bundle adjustment
 - Practical considerations
- Applications
Structure from Motion

- Given: m images of n fixed 3D points
 \[x_i = P_i X_j, \quad i = 1, \ldots, m, \quad j = 1, \ldots, n \]
- Problem: estimate m projection matrices P_i and n 3D points X_j from the mn correspondences x_{ij}

What Can We Use This For?

- E.g. movie special effects

Structure from Motion Ambiguity

- If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of $1/k$, the projections of the scene points in the image remain exactly the same:
 \[x = PX = \left(\frac{1}{k} P \right) (kX) \]
 \[\Rightarrow \text{It is impossible to recover the absolute scale of the scene!} \]

Reconstruction Ambiguity: Similarity

- \[x = PX = \left(PQ - X \right) QX \]

Reconstruction Ambiguity: Affine

- \[x = PX = \left(PQ_A - X \right) Q_A X \]
Reconstruction Ambiguity: Projective

\[x = P X = (PQ_P)^t Q_R X \]

Topics of This Lecture

- Structure from Motion (SfM)
 - Initialization
 - Ambiguity
- Affine SfM
 - Affine cameras
 - Affine factorization
 - Affine upgrade
 - Dealing with missing data
- Projective SfM
 - Two-camera case
 - Projective factorization
 - Bundle adjustment
 - Practical considerations
- Applications

Hierarchy of 3D Transformations

- Projective 15 dof
- Affine 12 dof
- Similarity 7 dof
- Euclidean 6 dof

- With no constraints on the camera calibration matrix or on the scene, we get a projective reconstruction.
- Need additional information to upgrade the reconstruction to affine, similarity, or Euclidean.

From Projective to Affine

From Affine to Similarity

Slide credit: Svetlana Lazebnik
Structure from Motion

- Let’s start with affine cameras (the math is easier)

Orthographic Projection

- Special case of perspective projection
 - Distance from center of projection to image plane is infinite

Affine Cameras

- A general affine camera combines the effects of an affine transformation of the 3D space, orthographic projection, and an affine transformation of the image:

 \[
 P = \begin{bmatrix} 3 \times 3 & \text{affine} \\ 4 \times 4 & \text{affine} \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 & b_1 \\ a_2 & a_3 & a_4 & b_2 \\ a_3 & a_4 & a_5 & b_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}
 \]

 \[
 \text{Affine projection is a linear mapping + translation in inhomogeneous coordinates}
 \]

 \[
 x = \begin{bmatrix} x' \\ y' \end{bmatrix}, \quad \begin{bmatrix} a_1 & a_2 & a_3 & b_1 \\ a_2 & a_3 & a_4 & b_2 \\ a_3 & a_4 & a_5 & b_3 \\ 0 & 0 & 0 & 1 \end{bmatrix} = AX + b
 \]

 \[
 \text{Projection of world origin}\]

Affine Structure from Motion

- Given: m images of n fixed 3D points:
 - \(x_i = A_i X_j + b_i, \quad i = 1, \ldots, m, \quad j = 1, \ldots, n\)
 - Problem: use the mn correspondences \(x_{ij}\) to estimate m projection matrices \(A_i\) and translation vectors \(b_i\), and n points \(X_j\)

- The reconstruction is defined up to an arbitrary affine transformation \(Q\) (12 degrees of freedom):

 \[
 \begin{bmatrix} A \\ b \end{bmatrix} \rightarrow \begin{bmatrix} A \\ b \end{bmatrix} Q^{-1}, \quad \begin{bmatrix} X \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} Q \end{bmatrix} \begin{bmatrix} X \\ 1 \end{bmatrix}
 \]

 - We have 2mn knowns and 8m + 3n unknowns (minus 12 dof for affine ambiguity).

- Thus, we must have 2mn > 8m + 3n - 12.

- For two views, we need four point correspondences.
Affine Structure from Motion

- Let’s create a $2m \times n$ data (measurement) matrix:

\[
D = \begin{bmatrix}
\hat{x}_{11} & \hat{x}_{12} & \cdots & \hat{x}_{1n} \\
\hat{x}_{21} & \hat{x}_{22} & \cdots & \hat{x}_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\hat{x}_{m1} & \hat{x}_{m2} & \cdots & \hat{x}_{mn}
\end{bmatrix}
\]

Cameras (2m)

Points (n)

Slide credit: Svetlana Lazebnik

Factorizing the Measurement Matrix

- Singular value decomposition of D:

\[
D = U \Sigma V^T
\]

$n \times n$ $n \times n$ $n \times n$

2m

n

Shape

Motion

Measurements

n

3

D = MS

Slide credit: Martial Hebert

Factorizing the Measurement Matrix

- Obtaining a factorization from SVD:

\[
D = U_k \times \begin{bmatrix} \mathbf{W} & \mathbf{V}_k^T \end{bmatrix}
\]

$n \times n$

$n \times n$

$3 \times n$

3×3

3×3

3×3

To reduce to rank 3, we just need to set all the singular values to 0 except for the first 3.

Slide credit: Martial Hebert
Factorizing the Measurement Matrix

- Obtaining a factorization from SVD:

\[D = U \times W \times V^T \]

Possible decomposition:

\[D = M \times S \]

This decomposition minimizes \(ID-MSI^2 \)

Affine Ambiguity

- The decomposition is not unique. We get the same \(D \) by using any \(3 \times 3 \) matrix \(C \) and applying the transformations \(M \rightarrow MC, S \rightarrow C^{-1}S \).
- That is because we have only an affine transformation and we have not enforced any Euclidean constraints (like forcing the image axes to be perpendicular, for example). We need a Euclidean upgrade.

Estimating the Euclidean Upgrade

- Orthographic assumption: image axes are perpendicular and scale is 1.

\[a_1 \cdot a_2 = 0 \]

\[|a_1|^2 = |a_2|^2 = 1 \]

This can be converted into a system of \(3m \) equations:

\[\begin{align*}
 \alpha_1 \cdot \alpha_2 &= 0 \\
 |\alpha_1|^2 &= 1 \\
 |\alpha_2|^2 &= 1 \\
\end{align*} \]

for the transformation matrix \(C \) ⇒ goal: estimate \(C \)

Algorithm Summary

- Given: \(m \) images and \(n \) features \(x_{ij} \)
- For each image \(i \), center the feature coordinates.
- Construct a \(2m \times n \) measurement matrix \(D \):
 - Column \(j \) contains the projection of point \(j \) in all views
 - Row \(i \) contains one coordinate of the projections of all the \(n \) points in image \(i \)
- Factorize \(D \):
 - Compute SVD: \(D = U W V^T \)
 - Create \(U_i \) by taking the first 3 columns of \(U \)
 - Create \(V_i \) by taking the first 3 columns of \(V \)
 - Create \(W_i \) by taking the upper left 3 \times 3 block of \(W \)
 - Create the motion and shape matrices:
 - \(M = U_i W_i \) and \(S = W_i V_i^T \) (or \(M = U_i \) and \(S = W_i V_1^T \))
 - Eliminate affine ambiguity
Dealing with Missing Data

- So far, we have assumed that all points are visible in all views.
- In reality, the measurement matrix typically looks something like this:

\[
\begin{array}{cccccccc}
\text{Cameras} & \text{Points} \\
6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\end{array}
\]

- Possible solution: decompose matrix into dense sub-blocks, factorize each sub-block, and fuse the results.
 - Incremental bilinear refinement

1. Perform factorization on a dense sub-block
2. Solve for a new 3D point visible by at least two known cameras (linear least squares)
3. Solve for a new camera that sees at least three known 3D points (linear least squares)

Dealing with Missing Data

- Possible solution: decompose matrix into dense sub-blocks, factorize each sub-block, and fuse the results.
 - Finding dense maximal sub-blocks of the matrix is NP-complete (equivalent to finding maximal cliques in a graph)
 - Incremental bilinear refinement

1. Perform factorization on a dense sub-block
2. Solve for a new 3D point visible by at least two known cameras (linear least squares)
3. Solve for a new camera that sees at least three known 3D points (linear least squares)

Comments: Affine SfM

- Affine SfM was historically developed first.
- It is valid under the assumption of affine cameras.
 - Which does not hold for real physical cameras...
 - But which is still tolerable if the scene points are far away from the camera.

- For good results with real cameras, we typically need projective SfM.
 - Harder problem, more ambiguity
 - Math is a bit more involved...
 - (Here, only basic ideas. If you want to implement it, please look at the H&Z book for details).

Topics of This Lecture

- Structure from Motion (SfM)
 - Motivation
 - Ambiguity
 - Affine SfM
 - Affine cameras
 - Affine factorization
 - Euclidean upgrade
 - Dealing with missing data

- Projective SfM
 - Two-camera case
 - Projective factorization
 - Bundle adjustment
 - Practical considerations

- Applications
Projective Structure from Motion

- Given: \(m\) images of \(n\) fixed 3D points
- \(x_i = P_i x_j\), \(i = 1, \ldots, m\), \(j = 1, \ldots, n\)
- Problem: estimate \(m\) projection matrices \(P_i\) and \(n\) 3D points \(X_j\) from the \(mn\) correspondences \(x_{ij}\)

Projective Structure from Motion

- Given: \(m\) images of \(n\) fixed 3D points
- Problem: estimate \(m\) projection matrices \(P_i\) and \(n\) 3D points \(X_j\) from the \(mn\) correspondences \(x_{ij}\)
- With no calibration info, cameras and points can only be recovered up to a 4x4 projective transformation \(Q\):
 \[X \rightarrow QX, \ P \rightarrow PQ^{-1}\]
- We can solve for structure and motion when \(2mn > 11m + 3n - 15\)
- For two cameras, at least 7 points are needed.

Projective SfM: Two-Camera Case

- Assume fundamental matrix \(F\) between the two views
 - First camera matrix: \([I|0]Q\)
 - Second camera matrix: \([Alb|Q\)
- Let \(X = QX\), then \(z = [I|0]X\), \(z' = [Alb]X\)
- And
 \[z' = A[I|0]X + b = A X + b\]
 \[(z' \times b) \cdot x' = (A X + b) \cdot x'\]
 \[0 = (A X + b) \cdot x'\]
- So we have \(x^T[b]A = 0\)
- \(F = [b]A\): epipole \((F^Tb = 0)\), \(A = [b]F\)

Sequential Structure from Motion

- Initialize motion from two images using fundamental matrix
- Initialize structure
- For each additional view:
 - Determine projection matrix of new camera using all the known 3D points that are visible in its image - calibration
Self-Calibration

Determining intrinsic camera parameters directly from uncalibrated images.

For example, when the images are acquired by a single moving camera, we can use the constraint that the intrinsic parameter matrix remains fixed for all the images.

Compute initial projective reconstruction and find 3D projective transformation matrix \(Q \) such that all camera matrices are in the form \(P_i = K[Q_i, I] \).

Can use constraints on the form of the calibration matrix: square pixels, zero skew, fixed focal length, etc.
Practical Considerations (1)

1. Role of the baseline
 - Small baseline: large depth error
 - Large baseline: difficult search problem
 • Solution
 - Track features between frames until baseline is sufficient.

Practical Considerations (2)

2. There will still be many outliers
 - Incorrect feature matches
 - Moving objects
 ⇒ Apply RANSAC to get robust estimates based on the inlier points.

3. Estimation quality depends on the point configuration
 - Points that are close together in the image produce less stable solutions.
 ⇒ Subdivide image into a grid and try to extract about the same number of features per grid cell.

General Guidelines

• Use calibrated cameras wherever possible.
 - It makes life so much easier, especially for SfM.
• SfM with 2 cameras is far more robust than with a single camera.
 - Triangulate feature points in 3D using stereo.
 - Perform 2D-3D matching to recover the motion.
 - More robust to loss of scale (main problem of 1-camera SfM).
• Any constraint on the setup can be useful
 - E.g. square pixels, zero skew, fixed focal length in each camera
 - E.g. fixed baseline in stereo SfM setup
 - E.g. constrained camera motion on a ground plane
 - Making best use of those constraints may require adapting the algorithms (some known results are described in H&Z).

Structure-from-Motion: Limitations

• Very difficult to reliably estimate metric SfM unless
 - Large (x or y) motion
 - Large field-of-view and depth variation
• Camera calibration important for Euclidean reconstruction
• Need good feature tracker

Topics of This Lecture

• Structure from Motion (SfM)
 - Ambiguity
• Affine SfM
 - Affine cameras
 - Affine factorization
• Euclidean SfM
• Projective SfM
 - Two-camera case
 - Projective factorization
• Applications

Commercial Software Packages

• boujou
 (http://www.2d3.com/)
• PFTrack
 (http://www.thepixelfarm.co.uk/)
• MatchMover
 (http://www.realviz.com/)
• SynthEyes
 (http://www.ssontech.com/)
• Icarus
 (http://aig.cs.man.ac.uk/research/reveal/icarus/)
• Voodoo Camera Tracker
 (http://www.digilab.uni-hannover.de/)
boujou demo

(We have a license available, so if you want to try it for interesting projects, contact us.)

Applications: Matchmoving

- Putting virtual objects into real-world videos

<table>
<thead>
<tr>
<th>Original sequence</th>
<th>Tracked features</th>
</tr>
</thead>
<tbody>
<tr>
<td>SfM results</td>
<td>Final video</td>
</tr>
</tbody>
</table>

Applications: Large-Scale SfM from Flickr

References and Further Reading

- A (relatively short) treatment of affine and projective SfM and the basic ideas and algorithms can be found in Chapters 12 and 13 of

- More detailed information (if you really want to implement this) and better explanations can be found in Chapters 10, 18 (factorization) and 19 (self-calibration) of

 R. Hartley, A. Zisserman Multiple View Geometry in Computer Vision 2nd Ed., Cambridge Univ. Press, 2004