Computer Vision

Binary Image Analysis

23.10.2008

Bastian Leibe
RWTH Aachen
http://www.umic.rwth-aachen.de/multimedia
leibe@umic.rwth-aachen.de
Binary Images

- Just two pixel values
- Foreground and background
- Regions of interest
Uses: Industrial Inspection

Fig. 3 Schematic diagram of marking inspection setup at Texas Instruments

R. Nagarajan et al. “A real time marking inspection scheme for semiconductor industries“, 2006
Uses: Document Analysis, Text Recognition

Handwritten digits

Natural text (after detection)

Scanned documents

Source: Till Quack, Martin Renold
Uses: Medical/Bio Data

Source: D. Kim et al., Cytometry 35(1), 1999
Uses: Blob Tracking & Motion Analysis

Frame Differencing

Background Subtraction

Source: Kristen Grauman

Source: Tobias Jäggli
Uses: Shape Analysis, Free-Viewpoint Video

Visual Hull Reconstruction

Silhouette

Medial axis

Blue-c project, ETH Zurich

B. Leibe
Outline of Today’s Lecture

- Convert the image into binary form
 - Thresholding

- Clean up the thresholded image
 - Morphological operators

- Extract individual objects
 - Connected Components Labeling

- Describe the objects
 - Region properties

Image Source: D. Kim et al., Cytometry 35(1), 1999
Thresholding

• Grayscale image ⇒ Binary mask

• Different variants
 - One-sided
 \[F_T[i, j] = \begin{cases}
 1, & \text{if } F[i, j] \geq T \\
 0, & \text{otherwise}
 \end{cases} \]

 - Two-sided
 \[F_T[i, j] = \begin{cases}
 1, & \text{if } T_1 \leq F[i, j] \leq T_2 \\
 0, & \text{otherwise}
 \end{cases} \]

 - Set membership
 \[F_T[i, j] = \begin{cases}
 1, & \text{if } F[i, j] \in Z \\
 0, & \text{otherwise}
 \end{cases} \]
Selecting Thresholds

• Typical scenario
 - Separate an object from a distinct background

• Try to separate the different grayvalue distributions
 - Partition a bimodal histogram
 - Fit a parametric distribution (e.g. Mixture of Gaussians)
 - Dynamic or local thresholds

• In the following, I will present some simple methods.
• We will see some more general methods in Lecture 6...
A Nice Case: Bimodal Intensity Histograms

Ideal histogram, light object on dark background

Actual observed histogram with noise

Source: Robyn Owens
Not so Nice Cases...

• How to separate those?

- Threshold selection is difficult in the general case
 - Domain knowledge often helps
 - E.g. Fraction of text on a document page (⇒ histogram quantile)
 - E.g. Size of objects/structure elements

Source: Shapiro & Stockman
Global Binarization [Ohta’79]

- Search for the threshold T that minimizes the within-class variance σ_{within} of the two classes separated by T

\[\sigma_{\text{within}}^2 (T) = n_1(T)\sigma_1^2(T) + n_2(T)\sigma_2^2(T) \]

where

\[n_1(T) = \left \{ I_{(x,y)} < T \right \}, \quad n_2(T) = \left \{ I_{(x,y)} \geq T \right \} \]

- This is the same as maximizing the between-class variance σ_{between}

\[\sigma_{\text{between}}^2 (T) = \sigma^2 - \sigma_{\text{within}}^2 (T) \]

\[= n_1(T)n_2(T)[\mu_1(T) - \mu_2(T)]^2 \]
Algorithm

For each potential threshold T

1.) Separate the pixels into two clusters according to T
2.) Compute the means and variances of both clusters
3.) Compute $\sigma^2_{\text{between}}$

Choose

$$T^* = \arg \max_T [\sigma^2_{\text{between}}(T)]$$
Local Binarization [Niblack’86]

- Estimate a local threshold within a small neighborhood window W

$$T_W = \mu_W + k \cdot \sigma_W$$

where $k \in [-1, 0]$ is a user-defined parameter.

- Improved version to suppress background noise for document binarization [Sauvola’00]

$$T_W = \mu_W \left[1 + k \cdot \left(\frac{\sigma_W}{R} - 1 \right) \right]$$

where R is the dynamic range of σ and $k > 0$.

- Typical values: $R=128$ for 8-bit images and $k \approx 0.5$.

B. Leibe
Effects

Original image

Global threshold selection (Ohta)

Local threshold selection (Niblack)
Additional Improvements

- Document images often contain a smooth gradient

⇒ **Try to fit that gradient with a polynomial function**
Surface Fitting

- Polynomial surface of degree d
 \[f(x, y) = \sum_{i+j=0}^{d} b_{i+j} x^i y^j \]

- Least-squares estimation, e.g. for $d=3$ ($m=10$)

\[
\begin{bmatrix}
1 & x_0 & y_0 & x_0^2 & x_0 y_0 & \cdots & y_0^3 \\
1 & x_1 & y_1 & x_1^2 & x_1 y_1 & \cdots & y_1^3 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_n & y_n & x_n^2 & x_n y_n & \cdots & y_n^3
\end{bmatrix}
\begin{bmatrix}
b_0 \\
b_1 \\
\vdots \\
b_m
\end{bmatrix}
=\begin{bmatrix}
I_0 \\
I_1 \\
\vdots \\
I_n
\end{bmatrix}
\]

Solution with pseudo-inverse:

\[b = (A^T A)^{-1} A^T I \]

Matlab (using SVD):

\[b = I \backslash A \]
Surface Fitting

• Iterative Algorithm
 1.) Fit parametric surface to all points in region.
 2.) Subtract estimated surface.
 3.) Apply global threshold (e.g. with Ohta method)
 4.) Fit surface to all *background* pixels in original region.
 5.) Subtract estimated surface.
 5.) Apply global threshold (Ohta)
 6.) *Iterate further if needed*...

• The first pass also takes foreground pixels into account.
 ➢ This is corrected in the following passes.
 ➢ Basic assumption here: most pixels belong to the background.
Result Comparison

Original image

Global (Ohta)

Local (Niblack)

Polynomial + Global

Source: S. Lu & C. Tan, ICDAR’07
B. Leibe
Result Comparison

Original image

Global (Ohta)

Local (Sauvola)

Polynomial + Global

Source: S. Lu & C. Tan, ICDAR’07

B. Leibe
Outline of Today’s Lecture

- Convert the image into binary form
 - Thresholding

- Clean up the thresholded image
 - Morphological operators

- Extract individual objects
 - Connected Components Labeling

- Describe the objects
 - Region properties

Image Source: D. Kim et al., Cytometry 35(1), 1999
Cleaning the Binarized Results

• Results of thresholding often still contain noise

• Necessary cleaning operations
 - Remove isolated points and small structures
 - Fill holes

⇒ Morphological Operators
Morphological Operators

- **Basic idea**
 - Scan the image with a structuring element
 - Perform set operations (intersection, union) of image content with structuring element

- **Two basic operations**
 - Dilation *(Matlab: imdilate)*
 - Erosion *(Matlab: imerode)*

- **Several important combinations**
 - Opening *(Matlab: imopen)*
 - Closing *(Matlab: imclose)*
 - Boundary extraction

Image Source: R.C. Gonzales & R.E. Woods
Dilation

• Definition
 - “The dilation of A by B is the set of all displacements z, such that $(\hat{B})_z$ and A overlap by at least one element”.
 - $((\hat{B})_z$ is the mirrored version of B, shifted by z)

• Effects
 - If current pixel z is foreground, set all pixels under $(B)_z$ to foreground.
 ⇒ Expand connected components
 ⇒ Grow features
 ⇒ Fill holes

B. Leibe

Image Source: R.C. Gonzales & R.E. Woods
Erosion

• Definition

 “The erosion of A by B is the set of all displacements z, such that $(B)_z$ is entirely contained in A”.

• Effects

 If not every pixel under $(B)_z$ is foreground, set the current pixel z to background.

 ⇒ Erode connected components
 ⇒ Shrink features
 ⇒ Remove bridges, branches, noise

B. Leibe

Image Source: R.C. Gonzales & R.E. Woods
Effects

Original image

Dilation with circular structuring element

Erosion with circular structuring element

Image Source: http://homepages.inf.ed.ac.uk/rbf/HIPR2/
Opening

• Definition
 ➢ Sequence of Erosion and Dilation
 \[A \circ B = (A \ominus B) \oplus B \]

• Effect
 ➢ \(A \circ B \) is defined by the points that are reached if \(B \) is rolled around inside \(A \).
 ⇒ Remove small objects, keep original shape.

Image Source: R.C. Gonzales & R.E. Woods
Effect of Opening

- Feature selection through size of structuring element

Original image

Thresholded

Opening with small structuring element

Opening with larger structuring element

Effect of Opening

- Feature selection through *shape* of structuring element
Closing

- **Definition**
 - Sequence of Erosion and Dilation
 \[A \cdot B = (A \oplus B) \ominus B \]

- **Effect**
 - \(A \cdot B \) is defined by the points that are reached if \(B \) is rolled around on the outside of \(A \).
 - \(\Rightarrow \) Fill holes, keep original shape.
Effect of Closing

- Fill holes in thresholded image (e.g. due to specularities)

Original image | Thresholded | Closing with circular structuring element

Size of structuring element determines which structures are selectively filled.

Image Source: http://homepages.inf.ed.ac.uk/rbf/HIPR2/
Example Application: Opening + Closing

Original image | Opening | Closing

Eroded image | Dilated image

Structuring element

Erosion | Dilation | Dilation | Erosion

Source: R.C. Gonzales & R.E. Woods
Boundary Extraction

• Definition
 - First erode A by B, then subtract the result from the original A.
 $$\beta(A) = A - (A \oplus B)$$

• Effects
 - If a 3×3 structuring element is used, this results in a boundary that is exactly 1 pixel thick.
Outline of Today’s Lecture

- Convert the image into binary form
 - Thresholding

- Clean up the thresholded image
 - Morphological operators

- Extract individual objects
 - Connected Components Labeling

- Describe the objects
 - Region properties

Image Source: D. Kim et al., Cytometry 35(1), 1999
Connected Components Labeling

- **Goal:** Identify distinct regions

<table>
<thead>
<tr>
<th>Binary image</th>
<th>Connected components labeling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sources: Shapiro & Stockman, Chandra
Connected Components Examples

connected components of 1’s from thresholded image

connected components of cluster labels

Source: Pinar Duygulu
Connectedness

- Which pixels are considered neighbors?

4-connected

8-connected

Source: Chaitanya Chandra
Sequential Connected Components

- Labeling a pixel only requires to consider its prior and superior neighbors.
- It depends on the type of connectivity used for foreground (4-connectivity here).

Same object

New object

(a) (b) (c) (d)

What happens in these cases?

Equivalence table
Sequential Connected Components (2)

- Process the image from left to right, top to bottom:
 1.) If the next pixel to process is 1
 i.) If only one of its neighbors (top or left) is 1, copy its label.
 ii.) If both are 1 and have the same label, copy it.
 iii.) If they have different labels
 – Copy the label from the left.
 – Update the equivalence table.
 iv.) Otherwise, assign a new label.

- Re-label with the smallest of equivalent labels

Slide credit: J. Neira
B. Leibe
Application: Blob Tracking

Absolute differences from frame to frame
Thresholding
Eroding
Application: Segmentation of a Liver

Region Filling → Extract Largest Region → Boundary Peeling

Application by Jie Zhu, Cornell University
Outline of Today’s Lecture

- Convert the image into binary form
 - Thresholding

- Clean up the thresholded image
 - Morphological operators

- Extract individual objects
 - Connected Components Labeling

- Describe the objects
 - Region properties
Region Properties

• From the previous steps, we can obtain separated objects.

• Some useful features can be extracted once we have connected components, including
 - Area
 - Centroid
 - Extremal points, bounding box
 - Circularity
 - Spatial moments
Area and Centroid

- We denote the set of pixels in a region by R
- Assuming square pixels, we obtain

 - **Area:**
 \[
 A = \sum_{(x,y)\in R} 1
 \]

 - **Centroid:**
 \[
 \overline{x} = \frac{1}{A} \sum_{(x,y)\in R} x \\
 \overline{y} = \frac{1}{A} \sum_{(x,y)\in R} y
 \]

Source: Shapiro & Stockman
Circularity

- Measure the deviation from a perfect circle

 - **Circularity:** \[C = \frac{\mu_R}{\sigma_R} \]

 where \(\mu_R \) and \(\sigma_R^2 \) are the mean and variance of the distance from the centroid of the shape to the boundary pixels \((x_k, y_k)\).

 - **Mean radial distance:**
 \[\mu_R = \frac{1}{K} \sum_{k=0}^{K-1} \| (x_k, y_k) - (\bar{x}, \bar{y}) \| \]

 - **Variance of radial distance:**
 \[\sigma_R^2 = \frac{1}{K} \sum_{k=0}^{K-1} \left(\| (x_k, y_k) - (\bar{x}, \bar{y}) \| - \mu_R \right)^2 \]

Source: Shapiro & Stockman
Invariant Descriptors

- Often, we want features independent of location, orientation, scale.

\[[a_1, a_2, a_3, \ldots] \quad [b_1, b_2, b_3, \ldots] \]

Feature space distance

Slide credit: Kristen Grauman
Central Moments

- S is a subset of pixels (region).
- Central $(j,k)^{th}$ moment defined as:
 $$\mu_{jk} = \sum_{(x,y) \in S} (x - \bar{x})^j (y - \bar{y})^k$$
- Invariant to translation of S.
- Interpretation:
 - 0^{th} central moment: area
 - 2^{nd} central moment: variance
 - 3^{rd} central moment: skewness
 - 4^{th} central moment: kurtosis
Moment Invariants

- Normalized central moments

\[\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}}, \quad \gamma = \frac{p + q}{2} + 1 \]

- From those, a set of invariant moments can be defined for object description.

\[\begin{align*}
\phi_1 &= \eta_{20} + \eta_{02} \\
\phi_2 &= (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2 \\
\phi_3 &= (\eta_{30} - 3\eta_{12})^2 + (3\eta_{21} - \eta_{03})^2 \\
\phi_4 &= (\eta_{30} + \eta_{12})^2 + (\eta_{21} + \eta_{03})^2
\end{align*} \]

(Additional invariant moments \(\phi_5, \phi_6, \phi_7\) can be found in the literature).

- Robust to translation, rotation & scaling, but don’t expect wonders (still summary statistics).
Moment Invariants

\[
\phi_5 = (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12})\left[(\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2\right] \\
+ (3\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03})\left[3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2\right]
\]

\[
\phi_6 = (\eta_{20} - \eta_{02})\left[(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2\right] \\
+ 4\eta_{11}(\eta_{30} + \eta_{12})(\eta_{21} + \eta_{03})
\]

\[
\phi_7 = (3\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12})\left[(\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2\right] \\
+ (3\eta_{12} - \eta_{30})(\eta_{21} + \eta_{03})\left[3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2\right]
\]
Axis of Least Second Moment

- Invariance to orientation?
 - Need a common alignment

 \[
 \begin{bmatrix}
 \mu_{20} & \mu_{11} \\
 \mu_{11} & \mu_{02}
 \end{bmatrix} = VDV^T = \begin{bmatrix}
 v_{11} & v_{12} & \lambda_1 & 0 \\
 v_{22} & v_{22} & 0 & \lambda_2
 \end{bmatrix} \begin{bmatrix}
 v_{11} \\
 v_{21}
 \end{bmatrix}
 \]

 Axis for which the squared distance to 2D object points is minimized (maximized).
Summary: Binary Image Processing

- **Pros**
 - Fast to compute, easy to store
 - Simple processing techniques
 - Can be very useful for constrained scenarios

- **Cons**
 - Hard to get “clean” silhouettes
 - Noise is common in realistic scenarios
 - Can be too coarse a representation
 - Cannot deal with 3D changes
References and Further Reading

• More on morphological operators can be found in
 Prentice Hall, 2001

• Online tutorial and Java demos available on