Computer Vision - Lecture 2

Binary Image Analysis

25.10.2012

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de/
leibe@vision.rwth-aachen.de

Announcements

• Please subscribe to the lecture on the Campus system!
 ● Important to get email announcements and L2P access!
 ● Bachelor students please also subscribe

Binary Images

• Just two pixel values
• Foreground and background
• Regions of interest

Uses: Industrial Inspection

R. Nagarajan et al. “A real time marking inspection scheme for semiconductor industries”, 2006

Uses: Document Analysis, Text Recognition

Handwritten digits
Natural text (after detection)
Scanned documents

Uses: Medical/Bio Data

Source: D. Kim et al., Cytometry 35(1), 1999
Perceptual and Sensory Augmented Computing

Computer Vision WS

12/13

Uses: Blob Tracking & Motion Analysis
- Frame Differencing
- Background Subtraction

Uses: Shape Analysis, Free-Viewpoint Video
- Visual Hull Reconstruction
- Silhouette
- Medial axis

Uses: Intensity Based Detection
- Looking for dark pixels...

```matlab
fg_pix = find(im < 65);
```

Uses: Color Based Detection
- Looking for pixels within a certain color range...

```matlab
fg_pix = find(hue > t1 & hue < t2);
```

Issues
- How to demarcate multiple regions of interest?
 - Count objects
 - Compute further features per object
- What to do with “noisy” binary outputs?
 - Holes
 - Extra small fragments

Outline of Today’s Lecture
- Convert the image into binary form
 - Thresholding
- Clean up the thresholded image
 - Morphological operators
- Extract individual objects
 - Connected Components Labeling
- Describe the objects
 - Region properties
Thresholding

- Grayscale image \Rightarrow Binary mask
- Different variants
 - One-sided
 \[F_{ij} = \begin{cases} 1, & \text{if } f_{ij} \geq T \\ 0, & \text{otherwise} \end{cases} \]
 - Two-sided
 \[F_{ij} = \begin{cases} 1, & \text{if } T_1 \leq f_{ij} \leq T_2 \\ 0, & \text{otherwise} \end{cases} \]
 - Set membership
 \[F_{ij} = \begin{cases} 1, & \text{if } f_{ij} \in Z \\ 0, & \text{otherwise} \end{cases} \]

Selecting Thresholds

- Typical scenario
 - Separate an object from a distinct background
- Try to separate the different grayvalue distributions
 - Partition a bimodal histogram
 - Fit a parametric distribution (e.g. Mixture of Gaussians)
 - Dynamic or local thresholds

In the following, I will present some simple methods.
- We will see some more general methods in Lecture 6...

A Nice Case: Bimodal Intensity Histograms

- Ideal histogram, light object on dark background
- Actual observed histogram with noise

Not so Nice Cases...

- How to separate those?
- Threshold selection is difficult in the general case
 - Domain knowledge often helps
 - E.g. Fraction of text on a document page (⇒ histogram quantile)
 - E.g. Size of objects/structure elements

Global Binarization [Otsu'79]

- Search for the threshold T that minimizes the within-class variance σ_{within} of the two classes separated by T
 \[\sigma_{\text{within}}^2(T) = n_1(T)\sigma_1^2 + n_2(T)\sigma_2^2(T) \]
 where
 \[n_1(T) = |\{I(x,y) < T\}|, \quad n_2(T) = |\{I(x,y) \geq T\}| \]
- This is the same as maximizing the between-class variance σ_{between}
 \[\sigma_{\text{between}}^2(T) = \sigma^2 - \sigma_{\text{within}}^2(T) = n_1(T)n_2(T)[\mu_1(T) - \mu_2(T)]^2 \]

Algorithm

Precompute a cumulative grayvalue histogram h.
For each potential threshold T
1.) Separate the pixels into two clusters according to T
2.) Look up n_1, n_2 in h and compute both cluster means
3.) Compute $\sigma_{\text{between}}^2(T)$
Choose
\[T^* = \arg \max_T [\sigma_{\text{between}}^2(T)] \]
Local Binarization [Niblack’86]
- Estimate a local threshold within a small neighborhood window \(W \)
 \[
 T_W = \mu_W + k \cdot \sigma_W
 \]
 where \(k \in [-1,0] \) is a user-defined parameter.

Effect: What is the hidden assumption here?

Additional Improvements
- Document images often contain a smooth gradient
 \(\Rightarrow \) Try to fit that gradient with a polynomial function

Surface Fitting
- Polynomial surface of degree \(d \)
 \[
 f(x, y) = \sum_{i+j=0}^d b_{ij} x^i y^j
 \]
 Least-squares estimation, e.g. for \(d=3 \) (\(m=10 \))

Surface Fitting
- Iterative Algorithm
 1.) Fit parametric surface to all points in region.
 2.) Subtract estimated surface.
 3.) Apply global threshold (e.g. with Otsu method)
 4.) Fit surface to all background pixels in original region.
 5.) Subtract estimated surface.
 6.) Apply global threshold (Otsu)
 7.) Iterate further if needed...

- The first pass also takes foreground pixels into account.
 - This is corrected in the following passes.
 - Basic assumption here: most pixels belong to the background.
Outline of Today's Lecture

- Convert the image into binary form
 - Thresholding
- Clean up the thresholded image
 - Morphological operators
- Extract individual objects
 - Connected Components Labeling
- Describe the objects
 - Region properties

Cleaning the Binarized Results

- Results of thresholding often still contain noise
- Necessary cleaning operations
 - Remove isolated points and small structures
 - Fill holes
 \[\Rightarrow \text{Morphological Operators} \]

Morphological Operators

- Basic idea
 - Scan the image with a structuring element
 - Perform set operations (intersection, union) of image content with structuring element
- Two basic operations
 - Dilation (Matlab: \texttt{imdilate})
 - Erosion (Matlab: \texttt{imerode})
- Several important combinations
 - Opening (Matlab: \texttt{imopen})
 - Closing (Matlab: \texttt{imclose})
 - Boundary extraction

Dilation

- Definition
 - “The dilation of \(A \) by \(B \) is the set of all displacements \(\tilde{z} \), such that \((\tilde{B}, B)\) and \(A \) overlap by at least one element.”
 - \((\tilde{B}, B)\) is the mirrored version of \(B \), shifted by \(\tilde{z} \)
- Effects
 - If current pixel \(z \) is foreground, set all pixels under \((B)\) to foreground.
 - Erode connected components
 - Grow features
 - Fill holes

Erosion

- Definition
 - “The erosion of \(A \) by \(B \) is the set of all displacements \(z \), such that \((B, \tilde{B})\) is entirely contained in \(A \).”
- Effects
 - If not every pixel under \((B)\) is foreground, set the current pixel \(z \) to background.
 - Erode connected components
 - Shrink features
 - Remove bridges, branches, noise

Effects

Original image

Dilation with circular structuring element

Erosion with circular structuring element
Effects

- **Dilation with circular structuring element**
- **Erosion with circular structuring element**

Opening

- **Definition**
 - Sequence of Erosion and Dilation
 \[A \ast B = (A \ominus B) \oplus B \]
- **Effect**
 - \(A \ast B \) is defined by the points that are reached if \(B \) is rolled around inside \(A \).
 - \(\Rightarrow \) Remove small objects, keep original shape.

Effect of Opening

- **Feature selection through size of structuring element**
- **Feature selection through shape of structuring element**

Effect of Closing

- **Fill holes in thresholded image (e.g. due to specularities)**

Effect of Closing

- **How could we have extracted the lines?**

Closing

- **Definition**
 - Sequence of Dilation and Erosion
 \[A \ast B = (A \oplus B) \ominus B \]
- **Effect**
 - \(A \ast B \) is defined by the points that are reached if \(B \) is rolled around on the outside of \(A \).
 - \(\Rightarrow \) Fill holes, keep original shape.
Example Application: Opening + Closing

Application: Blob Tracking

Morphological Boundary Extraction
- Definition
 - First erode \(A \) by \(B \), then subtract the result from the original \(A \).
 - \(\beta(A) = A - (A \ominus B) \)
- Effects
 - If a 3x3 structuring element is used, this results in a boundary that is exactly 1 pixel thick.

Morphology Operators on Grayscale Images
- Dilation and erosion are typically performed on binary images.
- If image is grayscale: for dilation take the neighborhood max, for erosion take the min.
Outline of Today's Lecture

• Convert the image into binary form
 – Thresholding

• Clean up the thresholded image
 – Morphological operators

• Extract individual objects
 – Connected Components Labeling

• Describe the objects
 – Region properties

Connected Components Labeling

• Goal: Identify distinct regions

Connected Components Examples

Connectedness

• Which pixels are considered neighbors?

Sequential Connected Components

• Labeling a pixel only requires to consider its prior and superior neighbors.
 – It depends on the type of connectivity used for foreground (4-connectivity here).

• Process the image from left to right, top to bottom:
 1.) If the next pixel to process is 1
 a.) If only one of its neighbors (top or left) is 1, copy its label.
 b.) If both are 1 and have the same label, copy it.
 c.) Otherwise, assign a new label.
 d.) Otherwise, assign a new label.

 2.) If they have different labels
 a.) Copy the label from the left.
 b.) Update the equivalence table.

 3.) Otherwise, assign a new label.

 4.) Re-label with the smallest of equivalent labels
Outline of Today’s Lecture

- Convert the image into binary form
 - Thresholding
- Clean up the thresholded image
 - Morphological operators
- Extract individual objects
 - Connected Components Labeling
- Describe the objects
 - Region properties

Region Properties

- From the previous steps, we can obtain separated objects.
- Some useful features can be extracted once we have connected components, including:
 - Area
 - Centroid
 - Extremal points, bounding box
 - Circularity
 - Spatial moments

Area and Centroid

- We denote the set of pixels in a region by R
- Assuming square pixels, we obtain
 - Area:
 $$ A = \sum_{(x,y) \in R} 1 $$
 - Centroid:
 $$ \bar{x} = \frac{1}{A} \sum_{(x,y) \in R} x $$
 $$ \bar{y} = \frac{1}{A} \sum_{(x,y) \in R} y $$

Circularity

- Measure the deviation from a perfect circle
 - Circularity:
 $$ C = \frac{\mu_x}{\sigma_x} $$
 $$(x, y)$$
 - Mean radial distance:
 $$ \mu_x = \frac{1}{K} \sum_{k=0}^{K} \| (x_k, y_k) - (\bar{x}, \bar{y}) \| $$
 - Variance of radial distance:
 $$ \sigma_x^2 = \frac{1}{K} \sum_{k=0}^{K} [(x_k, y_k) - (\bar{x}, \bar{y}) - \mu_x]^2 $$

Invariant Descriptors

- Often, we want features independent of location, orientation, scale.
- $$ [a_1, a_2, a_3, \ldots] $$
- $$ [b_1, b_2, b_3, \ldots] $$
- Feature space distance
Central Moments

- S is a subset of pixels (region).
- Central (j,k)th moment defined as:
 \[\mu_{jk} = \sum_{(x,y) \in S} (x-x')^j (y-y')^k \]
- Invariant to translation of S.
- Interpretation:
 - 0th central moment: area
 - 2nd central moment: variance
 - 3rd central moment: skewness
 - 4th central moment: kurtosis

Moment Invariants (“Hu Moments”)

- Normalized central moments
 \[\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}^\gamma} \]
 \[\gamma = \frac{p+q+1}{2} \]
- From those, a set of invariant moments can be defined for object description.
 - $\phi_1 = \eta_{20} + \eta_{02}$
 - $\phi_2 = (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2$
 - $\phi_3 = (\eta_{10} - 3\eta_{01})^2 + (3\eta_{21} - \eta_{03})^2$
 - $\phi_4 = (\eta_{10} + \eta_{01})^2 + (\eta_{21} + \eta_{03})^2$
- Robust to translation, rotation & scaling, but don’t expect wonders (still summary statistics).

Moment Invariants

\[\phi_1 = (\eta_{10} - 3\eta_{01})(\eta_{10} + \eta_{01})(\eta_{10} + \eta_{01})^2 - 3(\eta_{21} + \eta_{03})^2 \]
\[+ (3\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03})(3(\eta_{10} + \eta_{01})^2 - (\eta_{21} + \eta_{03})^2) \]
\[\phi_2 = (\eta_{20} - \eta_{02})(\eta_{10} + \eta_{01})^2 - (\eta_{21} + \eta_{03})^2 \]
\[+ 4\eta_{11}(\eta_{10} + \eta_{01})(\eta_{21} + \eta_{03}) \]
\[\phi_3 = (3\eta_{21} - \eta_{03})(\eta_{10} + \eta_{01})(\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2 \]
\[+ (3\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03})(3(\eta_{10} + \eta_{01})^2 - (\eta_{21} + \eta_{03})^2) \]
Often better to use $\log_2(\phi_i)$ instead of ϕ_i directly...

Axis of Least Second Moment

- Invariance to orientation?
 - Need a common alignment
 - Compute Eigenvectors of 2nd moment matrix (Matlab: eig(A))
 \[\begin{bmatrix} \mu_{20} & \mu_{11} \\ \mu_{11} & \mu_{22} \end{bmatrix} = VDV^T \]
 \[\begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} \]
Axial for which the squared distance to 2D object points is minimized (maximized).

Summary: Binary Image Processing

- Pros
 - Fast to compute, easy to store
 - Simple processing techniques
 - Can be very useful for constrained scenarios

- Cons
 - Hard to get “clean” silhouettes
 - Noise is common in realistic scenarios
 - Can be too coarse a representation
 - Cannot deal with 3D changes

References and Further Reading

- More on morphological operators can be found in
 - R.C. Gonzales, R.E. Woods,
 Digital Image Processing,
 Prentice Hall, 2001
- Online tutorial and Java demos available on
You Can Do It At Home...

Accessing a webcam in Matlab:

```matlab
function out = webcam
% uses "Image Acquisition Toolbox",
adaptorName = 'winvideo';
vidFormat = 'I420_320x240';
vidObj1 = videoinput(adaptorName, 1, vidFormat);
set(vidObj1, 'ReturnedColorSpace', 'rgb');
set(vidObj1, 'FramesPerTrigger', 1);
out = vidObj1;

cam = webcam();
img = getsnapshot(cam);
```

Matlab Intro: Everything is a matrix

```
A = [1 2; 3 4];
```

Matlab Intro: Matrix Index

```
A(1,2) = 5;
```

Matlab Intro: Manipulating Matrices

```
A = [1 2 3; 4 5 6];
B = A';
C = A * B;
```
Matlab Intro: Manipulating Matrices

```
% Matrix operation
A = [1 2 3; 4 5 6];
>> A
A =
 1  2  3
 4  5  6

% Matrix concatenation
C = [A B];
>> C
C =
 1  2  3  4
 5  6  7  8

% Scripts
>> add = 1
add = 1
>> add = 2
add = 2
>> add = 3
add = 3
>> add = 4
add = 4
>> add = 5
add = 5
```

B. Leibe

```
% Functions
>> add = A + B
add = 5

% Matlab scripts
>> add = 1
add = 1
```

B. Leibe

Matlab Intro: Scripts and Functions

- Scripts are m-files containing MATLAB statements
- Functions are like any other m-file, but they accept arguments
- Name the function file the same as the function name

```
function y = myfunction(x)
% Function of one argument, with one return value
a = [0 1 1 1];
y = a + x;

function [x, y] = myotherfunction(x, y)
% Function of two arguments, with two return values
y = x + y;
```

B. Leibe

Matlab Intro: Try to Code in Matrix Ways

```
% Try to Code in Matrix Ways
N = hist(Y,M);
IM2 = imerode(IM,SE);
IM2 = imdilate(IM,SE);
IM2 = imclose(IM, SE);
IM2 = imopen(IM, SE);
L = bwlabel(BW,N);
STATS = regionprops(L,PROPERTIES);
```

B. Leibe

Matlab Intro: Important Commands

- `whos` – List variables in workspace
- `help` – Get help for any command
- `lookfor` – Search for keywords
- `clear/clear x` – Erase a variable/all variables
- `save` – Save the workspace
- `load` – Load a saved workspace
- `keyboard` – Enter debugging mode (until `dbquit`)

B. Leibe

```
% Morphology
N = hist(Y,M);
IM2 = imerode(IM,SE);
IM2 = imdilate(IM,SE);
IM2 = imclose(IM, SE);
IM2 = imopen(IM, SE);
L = bwlabel(BW,N);
STATS = regionprops(L,PROPERTIES);
```

Questions?

B. Leibe

```
% Matlab commands
whos
help
lookfor
clear
save
load
keyboard
```