Computer Vision - Lecture 3
Linear Filters
30.10.2012

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de

You Can Do It At Home…
Accessing a webcam in Matlab:

function out = webcam
% uses "Image Acquisition Toolbox"
adaptorName = 'winvideo';
vidFormat = 'I420_320x240';
vidObj1 = videoinput(adaptorName, 1, vidFormat);
set(vidObj1, 'ReturnedColorSpace', 'rgb');
set(vidObj1, 'FramesPerTrigger', 1);
out = vidObj1;

cam = webcam();
img = getsnapshot(cam);

Course Outline
• Image Processing Basics
 - Image Formation
 - Binary Image Processing
 - Linear Filters
 - Edge & Structure Extraction
 - Color
• Segmentation
• Local Features & Matching
• Object Recognition and Categorization
• 3D Reconstruction
• Motion and Tracking

Motivation
• Noise reduction/image restoration
 - Structure extraction

Topics of This Lecture
• Linear filters
 - What are they? How are they applied?
 - Application: smoothing
 - Gaussian filter
 - What does it mean to filter an image?
• Nonlinear Filters
 - Median filter
• Multi-Scale representations
 - How to properly rescale an image?
• Filters as templates
 - Correlation as template matching
Common Types of Noise

- **Salt & pepper noise**
 - Random occurrences of black and white pixels

- **Impulse noise**
 - Random occurrences of white pixels

- **Gaussian noise**
 - Variations in intensity drawn from a Gaussian ("Normal") distribution.

Basic Assumption

- Noise is i.i.d. (independent & identically distributed)

Gaussian Noise

\[f(x, y) = G(x, y) + \text{noise} \]

\[\text{Gaussian i.i.d. ("white") noise: } \]
\[q(x, y) = N(x, \sigma) \]

\[\text{>> noise = randn(size(im)).*sigma;} \]
\[\text{output = im + noise;} \]

Image Source: Martial Hebert

Slide credit: Kristen Grauman

First Attempt at a Solution

- **Assumptions:**
 - Expect pixels to be like their neighbors
 - Expect noise processes to be independent from pixel to pixel ("i.i.d. = independent, identically distributed")

- Let's try to replace each pixel with an average of all the values in its neighborhood...

Moving Average in 2D

\[F[x, y] \]
\[G[x, y] \]
Say the averaging window size is $2k+1$

Now generalize to allow different weights depending on each pixel's relative position:

The filter "kernel" or "mask" is the prescription for the weighted combination of its neighbors.

This is called cross-correlation, denoted $G = H \otimes F$

Correlation Filtering

- Say the averaging window size is $2k+1 \times 2k+1$:

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u, j+v]$$

- Loop over all pixels in neighborhood around image pixel $F[i,j]$.

- Non-uniform weights

Now generalize to allow different weights depending on neighboring pixel’s relative position:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i+u, j+v]$$

- This is called cross-correlation, denoted $G = H \otimes F$

- Filtering an image

Convolution

- Convolution:
 - Flip the filter in both dimensions (bottom to top, right to left)
 - Then apply cross-correlation

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i-u, j-v]$$

$$G = H \ast F$$

Notation for convolution operator
Correlation vs. Convolution
- **Correlation**
 \[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v] \]
 Matlab: \texttt{corr2}

- **Convolution**
 \[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v] \]
 Matlab: \texttt{conv2}

- **Note**
 If \(H[-u,-v] = H[u,v] \), then correlation \(\equiv \) convolution.

Shift Invariant Linear System
- **Shift invariant:**
 - Operator behaves the same everywhere, \textit{i.e.} the value of the output depends on the pattern in the image neighborhood, not the position of the neighborhood.

- **Linear:**
 - Superposition: \(h * (f_1 + f_2) = (h * f_1) + (h * f_2) \)
 - Scaling: \(h * (kf) = k(h * f) \)

Properties of Convolution
- **Linear & shift invariant**
- **Commutative:** \(f * g = g * f \)
- **Associative:** \((f * g) * h = f * (g * h) \)
 - Often apply several filters in sequence: \(((a * b_1) + b_2) + b_3 \)
 - This is equivalent to applying one filter: \(a * (b_1 + b_2 + b_3) \)
- **Identity:** \(f * e = f \)
 - For unit impulse \(e = [\ldots, 0, 0, 1, 0, 0, \ldots] \).
- **Differentiation:** \(\frac{\partial}{\partial x} (f * g) = \frac{\partial f}{\partial x} * g \)

Averaging Filter
- **What values belong in the kernel \(H[u,v] \) for the moving average example?**

\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & ? & 1 \\
1 & 1 & 1 \\
\end{bmatrix}
\]

- **Box filter:**

Smoothing by Averaging
- **Smoothing with a Gaussian**

Image Source: Forsyth & Ponce

"Ringing" artifacts!
Gaussian Smoothing

- Gaussian kernel
 \[G_\sigma = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}} \]
- Rotationally symmetric
- Weights nearby pixels more than distant ones
 - This makes sense as 'probabilistic' inference about the signal
- A Gaussian gives a good model of a fuzzy blob

Smoothing with a Gaussian - Comparison

Original

Filtered

Gaussian Smoothing

- What parameters matter here?
- Variance \(\sigma \) of Gaussian
 - Determines extent of smoothing

\[\sigma = 2 \text{ with } 30 \times 30 \text{ kernel} \]
\[\sigma = 5 \text{ with } 30 \times 30 \text{ kernel} \]

Gaussian Smoothing in Matlab

```matlab
>> hsize = 10;
>> sigma = 5;
>> h = fspecial('gaussian', hsize, sigma);
>> mesh(h);
>> imagesc(h);
>> outim = imfilter(im, h);
>> imshow(outim);
```

Effect of Smoothing

More noise →

\(\sigma = 0.5 \)
\(\sigma = 1 \)
\(\sigma = 2 \)
Efficient Implementation

- Both, the BOX filter and the Gaussian filter are separable:
 - First convolve each row with a 1D filter
 \[g(x) = \frac{1}{\sqrt{2\pi \sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right) \]
 - Then convolve each column with a 1D filter
 \[g(y) = \frac{1}{\sqrt{2\pi \sigma^2}} \exp\left(-\frac{y^2}{2\sigma^2}\right) \]

- Remember:
 - Convolution is linear - associative and commutative
 \[g_x \ast g_y \ast I = g_x \ast (g_y \ast I) = (g_x \ast g_y) \ast I \]

Filtering: Boundary Issues

- What is the size of the output?
 - MATLAB: `filter2(g,f,shape)`
 - `shape = 'full'`: output size is sum of sizes of f and g
 - `shape = 'same'`: output size is same as f
 - `shape = 'valid'`: output size is difference of sizes of f and g

Filtering: Boundary Issues

- How should the filter behave near the image boundary?
 - The filter window falls off the edge of the image
 - Need to extrapolate
 - Methods:
 - Clip filter (black)
 - Wrap around
 - Copy edge
 - Reflect across edge

Topics of This Lecture

- Linear filters
 - What are they? How are they applied?
 - Application: smoothing
 - Gaussian filter
 - What does it mean to filter an image?

- Nonlinear Filters
 - Median filter

- Multi-Scale representations
 - How to properly rescale an image?

- Filters as templates
 - Correlation as template matching

Why Does This Work?

- A small excursion into the Fourier transform to talk about spatial frequencies...
The Fourier Transform in Cartoons

- A small excursion into the Fourier transform to talk about spatial frequencies...

\[\cos(x) + 1 \cos(3x) + 0.8 \cos(5x) + 0.4 \cos(7x) + \ldots \]

Frequency spectrum

Fourier Transforms of Important Functions

- Sine and cosine transform to “frequency spikes”
- A Gaussian transforms to a Gaussian
- A box filter transforms to a sinc

Duality

- The better a function is localized in one domain, the worse it is localized in the other.
- This is true for any function
Effect of Convolution

- Convolving two functions in the image domain corresponds to taking the product of their transformed versions in the frequency domain.

$$f * g = \mathcal{F}^{-1}(\mathcal{F}(f) \cdot \mathcal{F}(g))$$

- This gives us a tool to manipulate image spectra.
 - A filter attenuates or enhances certain frequencies through this effect.

Effect of Filtering

- Noise introduces high frequencies. To remove them, we want to apply a “low-pass” filter.
- The ideal filter shape in the frequency domain would be a box. But this transfers to a spatial sinc, which has infinite spatial support.
- A compact spatial box filter transfers to a frequency sinc, which creates artifacts.
- A Gaussian has compact support in both domains. This makes it a convenient choice for a low-pass filter.

Low-Pass vs. High-Pass

Original image

Low-pass filtered

High-pass filtered

Quiz: What Effect Does This Filter Have?

Sharpening Filter

Original

Sharpening filter
- Accentuates differences with local average

before

after
Application: High Frequency Emphasis

- Original
- High pass Filter
- High Frequency Emphasis
- Histogram Equalization

Topics of This Lecture

- Linear filters
 - What are they? How are they applied?
 - Application: smoothing
 - Gaussian filter
 - What does it mean to filter an image?
- Nonlinear Filters
 - Median filter
- Multi-Scale representations
 - How to properly rescale an image?
- Image derivatives
 - How to compute gradients robustly?

Non-Linear Filters: Median Filter

- Basic idea
 - Replace each pixel by the median of its neighbors.

- Properties
 - Doesn't introduce new pixel values
 - Removes spikes: good for impulse, salt & pepper noise
 - Linear?

Median Filter

- The Median filter is edge preserving.

Median vs. Gaussian Filtering

- Gaussian
- Median
Topics of This Lecture

- Linear filters
 - What are they? How are they applied?
 - Application: smoothing
 - Gaussian filter
 - What does it mean to filter an image?
- Nonlinear Filters
 - Median filter
- Multi-Scale representations
 - How to properly rescale an image?
- Filters as templates
 - Correlation as template matching

Motivation: Fast Search Across Scales

Image Pyramid

How Should We Go About Resampling?

Fourier Interpretation: Discrete Sampling

- Sampling in the spatial domain is like multiplying with a spike function.
- Sampling in the frequency domain is like...
Sampling and Aliasing

- Nyquist theorem:
 - In order to recover a certain frequency f, we need to sample with at least $2f$.
 - This corresponds to the point at which the transformed frequency spectra start to overlap (the Nyquist limit).

Resampling with Prior Smoothing

- Note: We cannot recover the high frequencies, but we can avoid artifacts by smoothing before resampling.

The Gaussian Pyramid

- $G_l = (G_{l+1} \circ \text{gaussian}) \downarrow 2$
- $G_h = ((G_l \circ \text{blur}) \downarrow 2$ down-sample
- $G_{l-1} = (G_{l-1} \circ \text{blur}) \downarrow 2$
- $G_h = (G_h \circ \text{blur}) \downarrow 2$

Aliasing in Graphics

Disintegrating textures
Gaussian Pyramid - Stored Information

Summary: Gaussian Pyramid

- Construction: create each level from previous one
 - Smooth and sample
- Smooth with Gaussians, in part because
 - $G(\sigma_1) \ast G(\sigma_2) = G(\sqrt{\sigma_1^2 + \sigma_2^2})$
- Gaussians are low-pass filters, so the representation is redundant once smoothing has been performed.
 - There is no need to store smoothed images at the full original resolution.

The Laplacian Pyramid

Laplacian ~ Difference of Gaussian

Why is this useful?

Topics of This Lecture

- Linear filters
 - What are they? How are they applied?
 - Application: smoothing
 - Gaussian filter
 - What does it mean to filter an image?
- Nonlinear Filters
 - Median filter
- Multi-Scale representations
 - How to properly rescale an image?
- Filters as templates
 - Correlation as template matching

Note: Filters are Templates

- Applying a filter at some point can be seen as taking a dot-product between the image and some vector.
- Filtering the image is a set of dot products.
- Insight
 - Filters look like the effects they are intended to find.
 - Filters find effects they look like.
Correlation as Template Matching

- Think of filters as a dot product of the filter vector with the image region.
 - Now measure the angle between the vectors:

 $a \cdot b = |a| |b| \cos \theta \quad \cos \theta = \frac{a \cdot b}{|a| |b|}$

 - Angle (similarity) between vectors can be measured by normalizing length of each vector to 1.

Summary: Mask Properties

- **Smoothing**
 - Values positive
 - Sum to 1 \Rightarrow constant regions same as input
 - Amount of smoothing proportional to mask size
 - Remove “high-frequency” components; “low-pass” filter

- **Filters act as templates**
 - Highest response for regions that “look the most like the filter”
 - Dot product as correlation

Summary Linear Filters

- **Linear filtering:**
 - Form a new image whose pixels are a weighted sum of original pixel values

- **Properties**
 - Output is a shift-invariant function of the input (same at each image location)

Examples:

- Smoothing with a box filter
- Smoothing with a Gaussian
- Finding a derivative
- Searching for a template

Pyramid representations

- Important for describing and searching an image at all scales
References and Further Reading

- Background information on linear filters and their connection with the Fourier transform can be found in Chapters 7 and 8 of
 - D. Forsyth, J. Ponce,