Computer Vision - Lecture 3

Linear Filters

30.10.2012

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de
Demo “Haribo Classification”
You Can Do It At Home...

Accessing a webcam in Matlab:

```matlab
function out = webcam
% uses "Image Acquisition Toolbox"
adapterName = 'winvideo';
vidFormat = 'I420_320x240';
vidObj1 = videoinput(adapterName, 1, vidFormat);
set(vidObj1, 'ReturnedColorSpace', 'rgb');
set(vidObj1, 'FramesPerTrigger', 1);
out = vidObj1 ;

cam = webcam();
img = getsnapshot(cam);
```
Course Outline

• Image Processing Basics
 ➢ Image Formation
 ➢ Binary Image Processing
 ➢ Linear Filters
 ➢ Edge & Structure Extraction
 ➢ Color

• Segmentation

• Local Features & Matching

• Object Recognition and Categorization

• 3D Reconstruction

• Motion and Tracking
Motivation

- Noise reduction/image restoration
- Structure extraction
Topics of This Lecture

• **Linear filters**
 - What are they? How are they applied?
 - Application: smoothing
 - Gaussian filter
 - What does it mean to filter an image?

• **Nonlinear Filters**
 - Median filter

• **Multi-Scale representations**
 - How to properly rescale an image?

• **Filters as templates**
 - Correlation as template matching
Common Types of Noise

- **Salt & pepper noise**
 - Random occurrences of black and white pixels

- **Impulse noise**
 - Random occurrences of white pixels

- **Gaussian noise**
 - Variations in intensity drawn from a Gaussian (“Normal”) distribution.

- **Basic Assumption**
 - Noise is i.i.d. (independent & identically distributed)
Gaussian Noise

\[f(x, y) = \tilde{f}(x, y) + \eta(x, y) \]

Gaussian i.i.d. (“white”) noise:
\[\eta(x, y) \sim N(\mu, \sigma) \]

\[
>> \text{noise} = \text{randn(size(im))}.*\text{sigma};
\]

\[
>> \text{output} = \text{im} + \text{noise};
\]

Image Source: Martial Hebert

Slide credit: Kristen Grauman
First Attempt at a Solution

• Assumptions:
 - Expect pixels to be like their neighbors
 - Expect noise processes to be independent from pixel to pixel ("i.i.d. = independent, identically distributed")

• Let’s try to replace each pixel with an average of all the values in its neighborhood...
Moving Average in 2D

$F[x, y]$ and $G[x, y]$
Moving Average in 2D

\[F[x, y] \]

\[G[x, y] \]

Source: S. Seitz
Moving Average in 2D

\[F[x, y] \]

\[G[x, y] \]

Source: S. Seitz
Moving Average in 2D

\[F[x, y] \quad \quad \quad G[x, y] \]

B. Leibe

Source: S. Seitz
Moving Average in 2D

\[F[x, y] \]

\[G[x, y] \]
Moving Average in 2D

\[F[x, y] \]

\[G[x, y] \]
Correlation Filtering

• Say the averaging window size is $2k+1 \times 2k+1$:

$$G[i, j] = \frac{1}{(2k + 1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i + u, j + v]$$

 - Attribute uniform weight to each pixel
 - Loop over all pixels in neighborhood around image pixel $F[i,j]$

• Now generalize to allow different weights depending on neighboring pixel’s relative position:

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]$$

 - Non-uniform weights
Correlation Filtering

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v] \]

- This is called cross-correlation, denoted \(G = H \otimes F \)

- Filtering an image
 - Replace each pixel by a weighted combination of its neighbors.
 - The filter “kernel” or “mask” is the prescription for the weights in the linear combination.

Slide credit: Kristen Grauman
Convolution

- Convolution:
 - Flip the filter in both dimensions (bottom to top, right to left)
 - Then apply cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]
\]

\[G = H \star F \]

Notation for convolution operator

Slide credit: Kristen Grauman
Correlation vs. Convolution

- **Correlation**
 \[
 G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]
 \]
 \[
 G = H \otimes F
 \]

- **Convolution**
 \[
 G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]
 \]
 \[
 G = H \star F
 \]

- **Note**

 - If \(H[-u,-v] = H[u,v] \), then correlation \(\equiv \) convolution.

Matlab:
- `filter2`
- `imfilter`

Matlab:
- `conv2`
Shift Invariant Linear System

- **Shift invariant:**
 - Operator behaves the same everywhere, *i.e.* the value of the output depends on the pattern in the image neighborhood, not the position of the neighborhood.

- **Linear:**
 - **Superposition:** $h * (f_1 + f_2) = (h * f_1) + (h * f_2)$
 - **Scaling:** $h * (kf) = k(h * f)$

Slide credit: Kristen Grauman
Properties of Convolution

- Linear & shift invariant
- Commutative: \(f \ast g = g \ast f \)
- Associative: \((f \ast g) \ast h = f \ast (g \ast h) \)
 - Often apply several filters in sequence: \((((a \ast b_1) \ast b_2) \ast b_3) \)
 - This is equivalent to applying one filter: \(a \ast (b_1 \ast b_2 \ast b_3) \)
- Identity: \(f \ast e = f \)
 - for unit impulse \(e = [\ldots, 0, 0, 1, 0, 0, \ldots] \).
- Differentiation: \(\frac{\partial}{\partial x} (f \ast g) = \frac{\partial f}{\partial x} \ast g \)
Averaging Filter

- What values belong in the kernel $H[u,v]$ for the moving average example?

\[
F[x, y] \ast H[u, v] = G[x, y]
\]

"box filter"

\[
G = H \ast F
\]
Smoothing by Averaging

depicts box filter: white = high value, black = low value

"Ringing" artifacts!

Original

Filtered

Slide credit: Kristen Grauman

Image Source: Forsyth & Ponce
Smoothing with a Gaussian

Original

Filtered

Image Source: Forsyth & Ponce
Smoothing with a Gaussian - Comparison

Original

Filtered

Image Source: Forsyth & Ponce
Gaussian Smoothing

- Gaussian kernel

\[G_\sigma = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}} \]

- Rotationally symmetric
- Weights nearby pixels more than distant ones
 - This makes sense as ‘probabilistic’ inference about the signal
- A Gaussian gives a good model of a fuzzy blob
Gaussian Smoothing

- What parameters matter here?
- **Variance** σ of Gaussian
 - Determines extent of smoothing

$\sigma = 2$ with 30×30 kernel

$\sigma = 5$ with 30×30 kernel

Slide credit: Kristen Grauman
Gaussian Smoothing

- What parameters matter here?
- **Size** of kernel or mask
 - Gaussian function has infinite support, but discrete filters use finite kernels
 - Rule of thumb: set filter half-width to about 3σ

\[
\sigma = 5 \text{ with } 10\times10 \text{ kernel}
\]
\[
\sigma = 5 \text{ with } 30\times30 \text{ kernel}
\]

Rule of thumb: set filter half-width to about 3σ!
Gaussian Smoothing in Matlab

```matlab
>> hsize = 10;
>> sigma = 5;
>> h = fspecial('gaussian', hsize, sigma);

>> mesh(h);

>> imagesc(h);

>> outim = imfilter(im, h);
>> imshow(outim);
```
Effect of Smoothing

More noise →

\[\sigma = 0.05 \quad \sigma = 0.1 \quad \sigma = 0.2 \]

B. Leibe

Slide credit: Kristen Grauman

Image Source: Forsyth & Ponce
Efficient Implementation

- Both, the BOX filter and the Gaussian filter are separable:
 - First convolve each row with a 1D filter
 \[g(x) = \frac{1}{\sqrt{2\pi \sigma}} \exp\left(-\frac{x^2}{2\sigma^2}\right) \]
 - Then convolve each column with a 1D filter
 \[g(y) = \frac{1}{\sqrt{2\pi \sigma}} \exp\left(-\frac{y^2}{2\sigma^2}\right) \]

- Remember:
 - Convolution is linear - associative and commutative
 \[g_x \ast g_y \ast I = g_x \ast (g_y \ast I) = (g_x \ast g_y) \ast I \]
Filtering: Boundary Issues

- What is the size of the output?
- MATLAB: `filter2(g, f, shape)`
 - `shape` = ‘full’: output size is sum of sizes of `f` and `g`
 - `shape` = ‘same’: output size is same as `f`
 - `shape` = ‘valid’: output size is difference of sizes of `f` and `g`
Filtering: Boundary Issues

- How should the filter behave near the image boundary?
 - The filter window falls off the edge of the image
 - Need to extrapolate
 - Methods:
 - Clip filter (black)
 - Wrap around
 - Copy edge
 - Reflect across edge

Source: S. Marschner
Filtering: Boundary Issues

• How should the filter behave near the image boundary?
 - The filter window falls off the edge of the image
 - Need to extrapolate
 - Methods (MATLAB):
 - Clip filter (black): \texttt{imfilter(f,g,0)}
 - Wrap around: \texttt{imfilter(f,g,'circular')}
 - Copy edge: \texttt{imfilter(f,g,'replicate')}
 - Reflect across edge: \texttt{imfilter(f,g,'symmetric')}

Source: S. Marschner
Topics of This Lecture

• **Linear filters**
 - What are they? How are they applied?
 - Application: smoothing
 - Gaussian filter
 - *What does it mean to filter an image?*

• **Nonlinear Filters**
 - Median filter

• **Multi-Scale representations**
 - How to properly rescale an image?

• **Filters as templates**
 - Correlation as template matching
Why Does This Work?

- A small excursion into the Fourier transform to talk about spatial frequencies...

\[3 \cos(x) + 1 \cos(3x) + 0.8 \cos(5x) + 0.4 \cos(7x) + \ldots\]

Source: Michal Irani
The Fourier Transform in Cartoons

- A small excursion into the Fourier transform to talk about spatial frequencies...

3 \cos(x) + 1 \cos(3x) + 0.8 \cos(5x) + 0.4 \cos(7x) + \ldots

frequency spectrum

“high” “low” “high”

Frequency coefficients

Source: Michal Irani
Fourier Transforms of Important Functions

- Sine and cosine transform to...
Fourier Transforms of Important Functions

• Sine and cosine transform to “frequency spikes”

• A Gaussian transforms to...

Image Source: S. Chenney
Fourier Transforms of Important Functions

- Sine and cosine transform to “frequency spikes”

- A Gaussian transforms to a Gaussian

- A box filter transforms to...
Fourier Transforms of Important Functions

- Sine and cosine transform to “frequency spikes”

- A Gaussian transforms to a Gaussian

- A box filter transforms to a sinc

\[
sinc(x) = \frac{\sin x}{x}
\]

All of this is symmetric!
Duality

- The better a function is localized in one domain, the worse it is localized in the other.

- This is true for any function
Effect of Convolution

- Convolving two functions in the image domain corresponds to taking the product of their transformed versions in the frequency domain.

\[f \star g \rightarrow \mathcal{F} \cdot G \]

- This gives us a tool to manipulate image spectra.
 - A filter attenuates or enhances certain frequencies through this effect.
Effect of Filtering

• Noise introduces high frequencies. To remove them, we want to apply a “low-pass” filter.

• The ideal filter shape in the frequency domain would be a box. But this transfers to a spatial sinc, which has infinite spatial support.

• A compact spatial box filter transfers to a frequency sinc, which creates artifacts.

• A Gaussian has compact support in both domains. This makes it a convenient choice for a low-pass filter.
Low-Pass vs. High-Pass

Original image

Low-pass filtered

High-pass filtered

Image Source: S. Chenney
Quiz: What Effect Does This Filter Have?
Sharpening Filter

Sharpening filter
– Accentuates differences with local average

Original

Source: D. Lowe

B. Leibe
Sharpening Filter

before

after

Source: D. Lowe
Application: High Frequency Emphasis

Original

High pass Filter

High Frequency Emphasis

High Frequency Emphasis + Histogram Equalization

Slide credit: Michal Irani
Topics of This Lecture

- **Linear filters**
 - What are they? How are they applied?
 - Application: smoothing
 - Gaussian filter
 - What does it *mean* to filter an image?

- **Nonlinear Filters**
 - Median filter

- **Multi-Scale representations**
 - How to properly rescale an image?

- **Image derivatives**
 - How to compute gradients robustly?
Non-Linear Filters: Median Filter

• Basic idea
 - Replace each pixel by the median of its neighbors.

• Properties
 - Doesn’t introduce new pixel values
 - Removes spikes: good for impulse, salt & pepper noise
 - Linear?
Median Filter

Salt and pepper noise

Median filtered

Plots of a row of the image

Slide credit: Kristen Grauman

Image Source: Martial Hebert
Median Filter

- The Median filter is *edge preserving.*

![Diagram of Median Filter](image)

INPUT

MEDIAN

MEAN

Slide credit: Kristen Grauman
Median vs. Gaussian Filtering

3x3
5x5
7x7

Gaussian

Median

Slide credit: Svetlana Lazebnik
Topics of This Lecture

- **Linear filters**
 - What are they? How are they applied?
 - Application: smoothing
 - Gaussian filter
 - What does it *mean* to filter an image?

- **Nonlinear Filters**
 - Median filter

- **Multi-Scale representations**
 - How to properly rescale an image?

- **Filters as templates**
 - Correlation as template matching
Motivation: Fast Search Across Scales

search

search

search

Image Source: Irani & Basri
Image Pyramid

Low resolution

High resolution

B. Leibe
How Should We Go About Resampling?

Let’s resample the checkerboard by taking one sample at each circle.

In the top left board, the new representation is reasonable. Top right also yields a reasonable representation.

Bottom left is all black (dubious) and bottom right has checks that are too big.
Fourier Interpretation: Discrete Sampling

- Sampling in the spatial domain is like multiplying with a spike function.

- Sampling in the frequency domain is like...

\[\text{?} \]
Fourier Interpretation: Discrete Sampling

- Sampling in the spatial domain is like multiplying with a spike function.

- Sampling in the frequency domain is like convolving with a spike function.
Sampling and Aliasing

Signal

Sample

Sampled Signal

Fourier Transform

Magnitude Spectrum

Copy and Shift

Fourier Transform

Magnitude Spectrum

Cut out by multiplication with box filter

Accurately Reconstructed Signal

Inverse Fourier Transform

Magnitude Spectrum

Image Source: Forsyth & Ponce
Sampling and Aliasing

- **Nyquist theorem:**
 - In order to recover a certain frequency f, we need to sample with at least $2f$.
 - This corresponds to the point at which the transformed frequency spectra start to overlap (the **Nyquist limit**).
Sampling and Aliasing

![Diagram showing the process of sampling and aliasing](image-source)
Aliasing in Graphics

Disintegrating textures
Resampling with Prior Smoothing

- Note: We cannot recover the high frequencies, but we can avoid artifacts by smoothing before resampling.
The Gaussian Pyramid

\[G_4 = (G_3 \ast \text{gaussian}) \downarrow 2 \]
\[G_3 = (G_2 \ast \text{gaussian}) \downarrow 2 \]
\[G_2 = (G_1 \ast \text{gaussian}) \downarrow 2 \]
\[G_1 = (G_0 \ast \text{gaussian}) \downarrow 2 \]
\[G_0 = \text{Image} \]

Source: Irani & Basri
Gaussian Pyramid - Stored Information

All the extra levels add very little overhead for memory or computation!
Summary: Gaussian Pyramid

• Construction: create each level from previous one
 - Smooth and sample

• Smooth with Gaussians, in part because
 - a Gaussian*Gaussian = another Gaussian
 - $G(\sigma_1) \ast G(\sigma_2) = G(\sqrt{\sigma_1^2 + \sigma_2^2})$

• Gaussians are low-pass filters, so the representation is redundant once smoothing has been performed.
 ⇒ There is no need to store smoothed images at the full original resolution.
The Laplacian Pyramid

Gaussian Pyramid

\[G_i = L_i + \text{expand}(G_{i+1}) \]

Laplacian Pyramid

\[L_n = G_n \]

Why is this useful?

Source: Irani & Basri
Laplacian ~ Difference of Gaussian

DoG = Difference of Gaussians
Cheap approximation - no derivatives needed.
Topics of This Lecture

- **Linear filters**
 - What are they? How are they applied?
 - Application: smoothing
 - Gaussian filter
 - What does it *mean* to filter an image?

- **Nonlinear Filters**
 - Median filter

- **Multi-Scale representations**
 - How to properly rescale an image?

- **Filters as templates**
 - Correlation as template matching
Note: Filters are Templates

- Applying a filter at some point can be seen as taking a dot-product between the image and some vector.
- Filtering the image is a set of dot products.

- Insight
 - Filters look like the effects they are intended to find.
 - Filters find effects they look like.
Where’s Waldo?

Scene

Template
Where’s Waldo?

Detected template

Template

Slide credit: Kristen Grauman
B. Leibe
Where’s Waldo?

Detected template

Correlation map

Slide credit: Kristen Grauman
Correlation as Template Matching

- Think of filters as a dot product of the filter vector with the image region
 - Now measure the angle between the vectors
 \[a \cdot b = |a| \cdot |b| \cdot \cos \theta \]
 \[\cos \theta = \frac{a \cdot b}{|a| \cdot |b|} \]
 - Angle (similarity) between vectors can be measured by normalizing length of each vector to 1.
Summary: Mask Properties

• Smoothing
 - Values positive
 - Sum to 1 ⇒ constant regions same as input
 - Amount of smoothing proportional to mask size
 - Remove “high-frequency” components; “low-pass” filter

• Filters act as templates
 - Highest response for regions that “look the most like the filter”
 - Dot product as correlation
Summary Linear Filters

- **Linear filtering:**
 - Form a new image whose pixels are a weighted sum of original pixel values

- **Properties**
 - Output is a shift-invariant function of the input (same at each image location)

Examples:
- Smoothing with a box filter
- Smoothing with a Gaussian
- Finding a derivative
- Searching for a template

Pyramid representations
- Important for describing and searching an image at all scales
References and Further Reading

• Background information on linear filters and their connection with the Fourier transform can be found in Chapters 7 and 8 of