Announcements
- Exercise sheet 3 will be made available today
 - Hough Transform
 - Mean-shift segmentation [last week’s topic]
 - Histogram based object recognition [today’s topic]
 - The exercise will be on Tuesday, 04.12.
 => Submit your results by Monday night.

Course Outline
- Image Processing Basics
- Segmentation
 - Segmentation and Grouping
 - Graph-Theoretic Segmentation
- Recognition
 - Global Representations
 - Subspace representations
- Local Features & Matching
- Object Categorization
- 3D Reconstruction
- Motion and Tracking

Recap: Image Segmentation
- Goal: identify groups of pixels that go together

Recap: Images as Graphs
- Fully-connected graph
 - Node (vertex) for every pixel
 - Link between every pair of pixels, (p,q)
 - Affinity weight w_{pq} for each link (edge)
 - w_{pq} measures similarity
 - Similarity is inversely proportional to difference
 (in color and position...)

Recap: Normalized Cut (NCut)
- A minimum cut penalizes large segments
- This can be fixed by normalizing for size of segments
- The normalized cut cost is:
 \[
 NCut(A,B) = \frac{cut(A,B)}{assoc(A,V)} + \frac{cut(A,B)}{assoc(B,V)}
 \]
 \[
 assoc(A,V) = \sum_{p \in A} \sum_{q \in V} w_{pq}
 \]
- The exact solution is NP-hard but an approximation can be computed by solving a generalized eigenvalue problem.
 - J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000
Recap: NCuts: Overall Procedure
1. Construct a weighted graph $G=(V,E)$ from an image.
2. Connect each pair of pixels, and assign graph edge weights,
 $W(i,j) = \text{Prob. that } i \text{ and } j \text{ belong to the same region}.$
3. Solve $(D-W)y = \lambda D y$ for the smallest few eigenvectors. This yields a continuous solution.
4. Threshold eigenvectors to get a discrete cut
 (This is where the approximation is made (we’re not solving NP).
5. Recursively subdivide if NCut value is below a pre-specified value.

NCuts Matlab code available at
http://www.cis.upenn.edu/~jshi/software/

Note: Skipping MRF Segmentation for now...
• Will present this at later point...

Topics of This Lecture
• Object Recognition
 • Appearance-based recognition
 • Global representations
 • Color histograms
• Recognition using histograms
 • Histogram comparison measures
 • Histogram backprojection
 • Multidimensional histograms
• Probabilistic Interpretation
 • Probability density estimation
 • Recognition from local samples
 • Extension: recognition of multiple objects in an image
 • Extension: colored derivatives

Object Recognition

Challenges
• Viewpoint changes
 • Translation
 • Image-plane rotation
 • Scale changes
 • Out-of-plane rotation
• Illumination
• Noise
• Clutter
• Occlusion

Appearance-Based Recognition
• Basic assumption
 • Objects can be represented by a set of images ("appearances").
 • For recognition, it is sufficient to just compare the 2D appearances.
• No 3D model is needed.

⇒ Fundamental paradigm shift in the 90’s
Global Representation

- **Idea**
 - Represent each object (view) by a global descriptor.
 - For recognizing objects, just match the descriptors.
 - Some modes of variation are built into the descriptor, the others have to be incorporated in the training data.
 - e.g. a descriptor can be made invariant to image-plane rotations.
 - Other variations:
 - Viewpoint changes
 - Translation
 - Scale changes
 - Noise
 - Clutter
 - Out-of-plane rotation
 - Occlusion

Color: Use for Recognition

- **Color:**
 - Color stays constant under geometric transformations
 - Local feature
 - Color is defined for each pixel
 - Robust to partial occlusion
 - **Idea**
 - Directly use object colors for recognition
 - Better: use statistics of object colors

Color Histograms

- **Color statistics**
 - Here: RGB as an example
 - Given: tristimulus R,G,B for each pixel
 - Compute 3D histogram
 - \(H(R,G,B) = \# \text{pixels with color (R,G,B)} \)

Color Normalization

- **One component of the 3D color space is intensity**
 - If a color vector is multiplied by a scalar, the intensity changes, but not the color itself.
 - This means colors can be normalized by the intensity.
 - Intensity is given by \(I = R + G + B \):
 - "Chromatic representation"
 - \(r = \frac{R}{R+G+B} \)
 - \(g = \frac{G}{R+G+B} \)
 - \(b = \frac{B}{R+G+B} \)

Color Normalization

- **Observation:**
 - Since \(r + g + b = 1 \), only 2 parameters are necessary
 - E.g. one can use \(r \) and \(g \)
 - and obtains \(b = 1 - r - g \)
Color Histograms

- Use for recognition
 - Works surprisingly well
 - In the first paper (1991), 66 objects could be recognized almost without errors

Topics of This Lecture

- Object Recognition
 - Appearance-based recognition
 - Global representations
 - Color histograms

- Recognition using histograms
 - Histogram comparison measures
 - Histogram backprojection
 - Multidimensional histograms

- Probabilistic Interpretation
 - Probability density estimation
 - Recognition from local samples
 - Extension: recognition of multiple objects in an image
 - Extension: colored derivatives

Recognition Using Histograms

- Histogram comparison

What Is a Good Comparison Measure?

- How to define matching cost?

Comparison Measures: Euclidean Distance

- Definition
 - Euclidean Distance (\(L_2\) norm)
 \[d(Q, V) = \sum_i (q_i - v_i)^2 \]

- Motivation
 - Focuses on the differences between the histograms.
 - Interpretation: distance in feature space.
 - Range: \([0, \infty)\]
 - All cells are weighted equally.
 - Not very robust to outliers!
Comparison Measures: Mahalanobis Distance

- **Definition**
 - Mahalanobis distance (Quadratic Form)
 \[d(Q, V) = (Q - V)^T \Sigma^{-1} (Q - V) \]
 \[= \sum_i \sum_j (q_i - v_i)(q_j - v_j) \sigma_{ij} \]

- **Motivation**
 - Interpretation:
 - Weighted distance in feature space.
 - Compensate for correlated data.
 - Range: \([0, \infty]\)
 - More robust to certain outliers.

Comparison Measures: Chi-Square

- **Definition**
 - Chi-square
 \[\chi^2(Q, V) = \sum_i (q_i - v_i)^2 \]

- **Motivation**
 - Statistical background:
 - Test if two distributions are different
 - Possible to compute a significance score
 - Range: \([0, \infty]\)
 - Cells are not weighted equally!
 - More robust to outliers than Euclidean distance.
 - If the histograms contain enough observations...

Comparison Measures: Bhattacharyya Distance

- **Definition**
 - Bhattacharyya coefficient
 \[BC(Q, V) = \sum q_i \sqrt{v_i} \]
 - Common distance measure:
 \[d_{BC}(Q, V) = \sqrt{1 - BC(Q, V)} \]

- **Motivation**
 - Statistical background
 - \(BC\) measures the statistical separability between two distributions.
 - Range: \([0, \infty]\)
 - (Reason for \(d_{BC}\): triangle inequality)

Comparison Measures: Kullback-Leibler

- **Definition**
 - KL-divergence
 \[KL(Q, V) = \sum q_i \log \frac{q_i}{v_i} \]

- **Motivation**
 - Information-theoretic background:
 - Measures the expected difference (#bits) required to code samples from distribution \(Q\) when using a code based on \(Q\) vs. based on \(V\).
 - Also called: information gain, relative entropy
 - Not symmetric!
 - Symmetric version: Jeffreys divergence
 \[JD(Q, V) = KL(Q, V) + KL(V, Q) \]

Comparison Measures: Histogram Intersection

- **Definition**
 - Intersection
 \[\cap(Q, V) = \sum_i \min(q_i, v_i) \]

- **Motivation**
 - Measures the common part of both histograms
 - Range: \([0, 1]\)
 - For unnormalized histograms, use the following formula
 \[\cap(Q, V) = \frac{1}{2} \left(\frac{\sum_i \min(q_i, v_i)}{q_i} + \frac{\sum_i \min(q_i, v_i)}{v_i} \right) \]

Comparison Measures: Earth Movers Distance

- **Motivation**: Moving Earth
Comp. Measures: Earth Movers Distance

• Motivation: Moving Earth

 Slide adapted from Pete Barnum

((distance moved) * (amount moved))

Slide adapted from Pete Barnum

• Motivation: Moving Earth

Linear Programming Problem

m clusters

n clusters

Q

V

V

Q

What is the minimum amount of work to convert Q into V?

Slide adapted from Pete Barnum

EMD Computation

• Constraints

1. Move “earth” only from Q to V

Q

V

Q'

V'

f_{ij} \geq 0

Slide credit: Pete Barnum

Slide adapted from Pete Barnum
EMD Computation

- Constraints

2. Cannot send more “earth” than there is

\[\sum_{j=1}^{n} f_{ij} \leq w_{q_i} \]

3. V cannot receive more than it can hold

\[\sum_{i=1}^{m} f_{ij} \leq w_{v_j} \]

4. As much “earth” as possible must be moved.
 - Either Q must be completely spent
 - Or V must be completely filled.

\[\sum_{i=1}^{m} \sum_{j=1}^{n} f_{ij} = \min \left(\sum_{i=1}^{m} w_{q_i}, \sum_{j=1}^{n} w_{v_j} \right) \]

Comp. Measures: Earth Movers Distance

- Motivation: Moving Earth
 - Linear Programming Problem
 - Distance measure
 \[D_{EMD}(Q,V) = \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} f_{ij} \]

- Advantages
 - Nearness measure without quantization
 - Partial matching
 - A true metric

- Disadvantage: expensive computation
 - Efficient algorithms available for 1D
 - Approximations for higher dimensions...

Summary: Comparison Measures

- Vector space interpretation
 - Euclidean distance
 - Mahalanobis distance

- Statistical motivation
 - Chi-square
 - Bhattacharyya

- Information-theoretic motivation
 - Kullback-Leibler divergence, Jeffreys divergence

- Histogram motivation
 - Histogram intersection

- Ground distance
 - Earth Movers Distance (EMD)
Histogram Comparison

- Which measure is best?
 - Depends on the application...
 - Euclidean distance is often not robust enough.
 - Both Intersection and χ^2 give good performance for histograms.
 - Intersection is a bit more robust.
 - χ^2 is a bit more discriminative.
 - KL/Jeffrey works sometimes very well, but is expensive.
 - EMD is most powerful, but also quite expensive.
 - There exist many other measures not mentioned here
 - e.g. statistical tests: Kolmogorov-Smirnov
 - Cramer/Von-Mises
 - ...

Summary: Recognition Using Histograms

- Simple algorithm
 1. Build a set of histograms $H = \{h_i\}$ for each known object
 - More exactly, for each view of each object
 2. Build a histogram h_t for the test image.
 3. Compare h_t to each $h_i \in H$
 - Using a suitable comparison measure
 4. Select the object with the best matching score
 - Or reject the test image if no object is similar enough.

Topics of This Lecture

- Object Recognition
 - Appearance-based recognition
 - Global representations
 - Color histograms
- Recognition using histograms
 - Histogram comparison measures
 - Histogram backprojection
 - Multidimensional histograms
- Probabilistic Interpretation
 - Probability density estimation
 - Recognition from local samples
 - Extension: recognition of multiple objects in an image
 - Extension: colored derivatives

Localization by Histogram Backprojection

- „Where in the image are the colors we’re looking for?“
 - Idea: Normalized histogram represents probability distribution
 $$p(x|obj)$$
 - Histogram backprojection
 - For each pixel x, compute the likelihood that this pixel color was caused by the object: $p(x|obj)$.
 - This value is projected back into the image (i.e. the image values are replaced by the corresponding histogram values).

Color-Based Skin Detection

- Used 18,696 images to build a general color model.
- Histogram representation

Discussion: Color Histograms

- Pros
 - Invariant to object translation & rotation
 - Slowly changing for out-of-plane rotation
 - No perfect segmentation necessary
 - Histograms change gradually when part of the object is occluded
 - Possible to recognize deformable objects
 - e.g. pullover
- Cons
 - Pixel colors change with the illumination ("color constancy problem")
 - Intensity
 - Spectral composition (illumination color)
 - Not all objects can be identified by their color distribution.
Topics of This Lecture

- Object Recognition
 - Appearance-based recognition
 - Global representations
 - Color histograms

- Recognition using histograms
 - Histogram comparison measures
 - Histogram backprojection
 - Multidimensional histograms

- Probabilistic Interpretation
 - Probability density estimation
 - Recognition from local samples
 - Extension: recognition of multiple objects in an image
 - Extension: colored derivatives

Generalization of the Idea

- Histograms of derivatives
 - D_x
 - D_y
 - D_{xx}
 - D_{xy}
 - D_{yy}

General Filter Response Histograms

- Any local descriptor (e.g. filter, filter combination) can be used to build a histogram.

- Examples:
 - Gradient magnitude
 \[Mag = \sqrt{D_x^2 + D_y^2} \]
 - Gradient direction
 \[Dir = \arctan\frac{D_y}{D_x} \]
 - Laplacian
 \[Lap = D_{xx} + D_{yy} \]

Multidimensional Representations

- Combination of several descriptors
 - Each descriptor is applied to the whole image.
 - Corresponding pixel values are combined into one feature vector.
 - Feature vectors are collected in multidimensional histogram.

Multidimensional Histograms

- Examples

Multidimensional Representations

- Useful simple combinations
 - $D_x D_y$
 - Rotation-variant
 - Descriptor changes when image is rotated.
 - Useful for recognizing oriented structures (e.g. vertical lines)
 - $Mag - Lap$
 - Rotation-invariant
 - Descriptor does not change when image is rotated.
 - Can be used to recognize rotated objects.
 - Less discriminant than rotation-variant descriptor.
Generalization: Filter Banks

• What filters to put in the bank?
 - Typically we want a combination of scales and orientations, different types of patterns.

Matlab code available for these examples:
http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

Example Application of a Filter Bank

Scales
Orientations

Filter bank of 8 filters
Input image

8 response images: magnitude of filtered outputs, per filter

Color vs. Texture

• These images look very similar in terms of their color distributions (when our features are R-G-B)
• But how would their texture distributions compare?

Special Case: Multiscale Representations

• Combination of several scales
 - Descriptors are computed at different scales.
 - Each scale captures different information about the object.
 - Size of the support region grows with increasing \(\sigma \).
 - Feature vectors capture both local details and larger-scale structures.

Summary: Multidimensional Representations

• Pros
 - Work very well for recognition.
 - Usually, simple combinations are sufficient (e.g. \(D_x, D_y, \text{Mag-Lap} \))
 - But multiple scales are very important!
 - Generalization: filter banks

• Cons
 - High-dimensional histograms \(\Rightarrow \) lots of storage space
 - Global representation \(\Rightarrow \) not robust to occlusion

Topics of This Lecture

• Object Recognition
 - Appearance-based recognition
 - Global representations
 - Color histograms

• Recognition using histograms
 - Histogram comparison measures
 - Histogram backprojection
 - Multidimensional histograms

• Probabilistic Interpretation
 - Probability density estimation
 - Recognition from local samples
 - Extension: recognition of multiple objects in an image
 - Extension: colored derivatives
From Global To Local...

- Up to now, we have compared entire histograms.
 \[\Rightarrow \text{Problematic if objects can be partially occluded.} \]
- Now:
 - Look at local measurements only.
 - What can we tell if we only see a single pixel of the object?

Recall: Working with Probabilities

- Random Variables:
 - A, B
- Probabilities:
 - $\Pr(A), \Pr(B)$
- Joint probability:
 - $\Pr(A, B)$
- Conditional probability:
 - $\Pr(A \mid B)$

Recall: Manipulation Rules

- Factorization of the joint
 \[\Pr(A, B) = \Pr(A \mid B) \Pr(B) = \Pr(B \mid A) \Pr(A) \]
- Marginalization
 \[\Pr(A) = \sum_i \Pr(A, b_i) = \sum_i \Pr(A \mid b_i) \Pr(b_i) = \sum_i \Pr(b_i \mid A) \Pr(A) \]
- Bayes theorem
 \[\Pr(A \mid B) = \frac{\Pr(B \mid A) \Pr(A)}{\Pr(B)} \]

Probabilistic Derivation

- Probability of object o_n given measurement m_k
 \[p(o_n | m_k) \]
 - Bayes
 - Marginalization
 - \[p(o_n | m_k) = \frac{p(m_k | o_n) p(o_n)}{\sum_j p(m_k | o_j) p(o_j)} \]
 - with
 - $p(o_n)$ the prior probability of object o_n.
 - $p(m_k)$ the prior probability of measurement m_k.
 - $p(m_k | o_n)$ the likelihood of the data given the model, i.e. the probability of the measurement m_k under the model o_n.
 \[\Rightarrow \text{We can read off } p(m_k | o_n) \text{ directly from the histogram.} \]
Probabilistic Recognition

- Assumption: all objects equally probable ("naive Bayes")

\[
p(o_i) = \frac{1}{N}
\]

\[
p(o_n|m_k) = \frac{p(m_k|o_n)p(o_n)}{\sum_i p(m_k|o_i)p(o_i)}
\]

\[
= \frac{1}{N} \sum_i p(m_k|o_i)
\]

\[
= \frac{1}{N} \sum_i p(m_k|o_i)
\]

value of hist. cell

sum over all objects

- Joint probability for two measurements

\[
p(o_n|m_k \land m_j) = \frac{p(m_k \land m_j|o_n)p(o_n)}{\sum_i p(m_k \land m_j|o_i)p(o_i)}
\]

- Assumption: \(m_k \) and \(m_j \) are independent

The individual probabilities can be multiplied

\[
p(o_n|m_k \land m_j) = \frac{p(m_k|o_n)p(m_j|o_n)p(o_n)}{\sum_i p(m_k|o_i)p(m_j|o_i)p(o_i)}
\]

Bayesian Recognition Algorithm

1. Build up histograms \(p(m_k|o_n) \) for each training object.

2. Sample the test image to obtain \(m_k \), \(k \in K \).
 - Only small number of local samples necessary.

3. Compute the probabilities for each training object.

\[
p(o_n|Image) = \frac{\prod_k p(m_k|o_n)p(o_n)}{\sum_i \prod_k p(m_k|o_i)p(o_i)}
\]

4. Select the object with the highest probability
 - Or reject the test image if no object accumulates sufficient probability.

Practical Issues

- Most expensive step

3. Compute the probabilities for each training object.

\[
p(o_n|Image) = \frac{\prod_k p(m_k|o_n)p(o_n)}{\sum_i \prod_k p(m_k|o_i)p(o_i)}
\]

- Notes

 - The numerator computes a score indicating how probable each object \(o_i \) in the database is.
 - This score can be used to compare the different object hypotheses.

Advantage

- Can already generate hypotheses from a small number of measurements

- Visible object portion of 10-20% may already be enough!
Practical Issues
- Most expensive step
 1. Compute the probabilities for each training object.
 \[p(o_i|\text{Image}) = \frac{\prod_j p(m_j|o_i)p(o_i)}{\sum_i \prod_j p(m_j|o_i)p(o_i)} \]
- Notes
 - The numerator computes a score indicating how probable each object \(o_i \) in the database is.
 - This score can be used to compare the different object hypotheses.
 - The denominator is the same for all objects in the database.
 - This term is important in order to decide if we have accumulated sufficient evidence to make a decision.

Results: Probabilistic (Bayesian) Recognition
- Test database
 - 103 test objects
 - 1327 test images total
 - 607 images with scale changes and rotations for 83 objects
 - 720 images with different viewpoints for 20 objects
 - Use 6D descriptor
 - \(D_y D_x \) with \(\sigma = \{1, 2, 4\} \)
 - explicitly trained for scale changes & rotations

Experimental Evaluation
- Recognition under Partial Occlusion
 - Compare intersection, \(\chi^2 \), and probabilistic recognition
- Results
 - Intersection more robust to occlusion than \(\chi^2 \)
 - Probabilistic recognition most robust
 - 62% visibility \(\Rightarrow \) 100% recognition
 - 33% visibility \(\Rightarrow \) 99% recognition
 - 13% visibility \(\Rightarrow \) >90% recognition

Topics of This Lecture
- Object Recognition
 - Appearance-based recognition
 - Global representations
 - Color histograms
- Recognition using histograms
 - Histogram comparison measures
 - Histogram backprojection
 - Multidimensional histograms
- Probabilistic Interpretation
 - Probability density estimation
 - Recognition from local samples
 - Extension: recognition of multiple objects in an image
 - Extension: colored derivatives

Extension: Colored Derivatives
- \(YC_1C_2 \) color space
 \[\begin{pmatrix} Y \\ C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} g_r & g_y & g_b \\ 3g_r - 2g_y & 3g_y - 2g_b & 3g_b - 2g_r \\ g_r g_y + g_y g_b + g_b g_r & g_r g_y + g_y g_b + g_b g_r & g_r g_y + g_y g_b + g_b g_r \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix} \]
- Color-opponent space
 - Inspired by models of the human visual system
 - \(Y \) = intensity
 - \(C_1 \) = red-green
 - \(C_2 \) = blue-yellow
- Generalization: derivatives along
 - \(Y \) axis \(\rightarrow \) intensity differences
 - \(C_1 \) axis \(\rightarrow \) red-green differences
 - \(C_2 \) axis \(\rightarrow \) blue-yellow differences
- Feature vector is rotated such that \(D_y = 0 \)
 - Rotation-invariant descriptor
Application: Brand Identification in Video

Summary

• Appearance-based Object Recognition
 ○ Using global representations

• Histograms
 ○ Color histograms
 ○ Histogram comparison measures
 ○ Multidimensional histograms

• Probabilistic Recognition
 ○ Histograms as probability density estimates
 ○ Recognition from local measurements
 ○ Recognition of multiple objects in an image

References and Further Reading

• Background information on histogram-based object recognition can be found in the following paper

• Matlab filterbank code available at
 ▶ http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html