Computer Vision - Lecture 10

Local Features

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de
Course Outline

- Image Processing Basics
- Segmentation & Grouping
- Object Recognition
- Object Categorization I
 - Sliding Window based Object Detection
- Local Features & Matching
 - Local Features - Detection and Description
 - Recognition with Local Features
- Object Categorization II
 - Part based Approaches
- 3D Reconstruction
- Motion and Tracking
Recap: Sliding-Window Object Detection

- If object may be in a cluttered scene, slide a window around looking for it.

- Essentially, this is a brute-force approach with many local decisions.

Slide credit: Kristen Grauman
Recap: Gradient-based Representations

• Consider edges, contours, and (oriented) intensity gradients

• Summarize local distribution of gradients with histogram
 - Locally orderless: offers invariance to small shifts and rotations
 - Contrast-normalization: try to correct for variable illumination
Classifier Construction: Many Choices...

Nearest Neighbor

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005,
Boiman, Shechtman, Irani 2008, ...

Neural networks

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998
...

Boosting

Viola, Jones 2001,
Torralba et al. 2004,
Opelt et al. 2006,
Benenson 2012, ...

Support Vector Machines

Vapnik, Schölkopf 1995,
Papageorgiou, Poggio ‘01,
Dalal, Triggs 2005,
Vedaldi, Zisserman 2012

Randomized Forests

Amit, Geman 1997,
Breiman 2001,
Lepetit, Fua 2006,
Gall, Lempitsky 2009,...
Recap: AdaBoost

Final classifier is combination of the weak classifiers

Slide credit: Kristen Grauman
Recap: Viola-Jones Face Detection

“Rectangular” filters

Feature output is difference between adjacent regions

Efficiently computable with integral image: any sum can be computed in constant time

Avoid scaling images \(\rightarrow\) scale features directly for same cost

Slide credit: Kristen Grauman

[Viola & Jones, CVPR 2001]
Recap: AdaBoost Feature+Classifier Selection

• Want to select the single rectangle feature and threshold that best separates **positive** (faces) and **negative** (non-faces) training examples, in terms of *weighted* error.

Resulting weak classifier:

\[
h_t(x) = \begin{cases}
 +1 & \text{if } f_t(x) > \theta_t \\
 -1 & \text{otherwise}
\end{cases}
\]

For next round, reweight the examples according to errors, choose another filter/threshold combo.

Slide credit: Kristen Grauman

[Viola & Jones, CVPR 2001]
Recap: Viola-Jones Face Detector

- Train with 5K positives, 350M negatives
- Real-time detector using 38 layer cascade
- 6061 features in final layer
- [Implementation available in OpenCV: http://sourceforge.net/projects/opencvlibrary/]
Classifier Construction: Many Choices...

Nearest Neighbor
Berg, Berg, Malik 2005, Chum, Zisserman 2007, Boiman, Shechtman, Irani 2008, ...

Neural networks
LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998
...

Boosting
Viola, Jones 2001, Torralba et al. 2004, Opelt et al. 2006, Benenson 2012, ...

Support Vector Machines

Randomized Forests

Slide adapted from Kristen Grauman
Linear Classifiers

Let

\[w = \begin{bmatrix} a \\ c \end{bmatrix}, \quad x = \begin{bmatrix} x \\ y \end{bmatrix} \]

\[ax + cy + b = 0 \]

\[w \cdot x + b = 0 \]
Linear Classifiers

- Find linear function to separate positive and negative examples

\[x_i \text{ positive: } x_i \cdot w + b \geq 0 \]
\[x_i \text{ negative: } x_i \cdot w + b < 0 \]

Which line is best?

Slide credit: Kristen Grauman
Support Vector Machines (SVMs)

- Discriminative classifier based on *optimal separating hyperplane* (i.e. line for 2D case)

- Maximize the *margin* between the positive and negative training examples

Slide credit: Kristen Grauman
Support Vector Machines

- Want line that maximizes the margin.

\[\begin{align*}
 x_i \text{ positive } (y_i = 1) : & \quad x_i \cdot w + b \geq 1 \\
 x_i \text{ negative } (y_i = -1) : & \quad x_i \cdot w + b \leq -1
\end{align*} \]

For support vectors, \(x_i \cdot w + b = \pm 1 \)

Quadratic optimization problem

Minimize \(\frac{1}{2} w^T w \)

Subject to \(y_i (w \cdot x_i + b) \geq 1 \)

Finding the Maximum Margin Line

• Solution: \[w = \sum_{i} \alpha_i y_i x_i \]
Finding the Maximum Margin Line

- **Solution:**
 \[w = \sum_i \alpha_i y_i x_i \]
 \[w \cdot x + b = \sum_i \alpha_i y_i x_i \cdot x + b \]

- **Classification function:**
 \[f(x) = \text{sign} \left(w \cdot x + b \right) \]
 \[= \text{sign} \left(\sum_i \alpha_i y_i x_i \cdot x + b \right) \]

 If \(f(x) < 0 \), classify as neg.,
 if \(f(x) > 0 \), classify as pos.

- Notice that this relies on an *inner product* between the test point \(x \) and the support vectors \(x_i \)

- (Solving the optimization problem also involves computing the inner products \(x_i \cdot x_j \) between all pairs of training points)

Non-Linear SVMs: Feature Spaces

• General idea: The original input space can be mapped to some higher-dimensional feature space where the training set is separable:

\[\Phi: \mathbf{x} \rightarrow \varphi(\mathbf{x}) \]

More on that in the Machine Learning lecture...

Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html
Nonlinear SVMs

• *The kernel trick*: instead of explicitly computing the lifting transformation $\varphi(x)$, define a kernel function K such that

$$K(x_i, x_j) = \varphi(x_i) \cdot \varphi(x_j)$$

• This gives a nonlinear decision boundary in the original feature space:

$$\sum_i \alpha_i y_i K(x_i, x) + b$$

Some Often-Used Kernel Functions

- **Linear:**
 \[K(x_i,x_j) = x_i^T x_j \]

- **Polynomial of power p:**
 \[K(x_i,x_j) = (1 + x_i^T x_j)^p \]

- **Gaussian (radial-basis function):**
 \[K(x_i, x_j) = \exp\left(-\frac{||x_i - x_j||^2}{2\sigma^2}\right) \]

Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html
Pedestrian detection with HoGs & SVMs

- **Navneet Dalal, Bill Triggs**, Histograms of Oriented Gradients for Human Detection, CVPR 2005
Summary: Sliding-Windows

• **Pros**
 - Simple detection protocol to implement
 - Good feature choices critical
 - Past successes for certain classes
 - Good detectors available (Viola & Jones, HOG, etc.)

• **Cons/Limitations**
 - High computational complexity
 - For example: 250,000 locations x 30 orientations x 4 scales = 30,000,000 evaluations!
 - This puts tight constraints on the classifiers we can use.
 - If training binary detectors independently, this means cost increases linearly with number of classes.
 - With so many windows, false positive rate better be low
Limitations of Sliding Windows (continued)

- Not all objects are “box” shaped
Limitations (continued)

- Non-rigid, deformable objects not captured well with representations assuming a fixed 2D structure; or must assume fixed viewpoint
- Objects with less-regular textures not captured well with holistic appearance-based descriptions
Limitations (continued)

- If considering windows in isolation, context is lost

Figure credit: Derek Hoiem
Limitations (continued)

- In practice, often entails large, cropped training set (expensive)
- Requiring good match to a global appearance description can lead to sensitivity to partial occlusions
Topics of This Lecture

- **Local Invariant Features**
 - Motivation
 - Requirements, Invariances

- **Keypoint Localization**
 - Harris detector
 - Hessian detector

- **Scale Invariant Region Selection**
 - Automatic scale selection
 - Laplacian-of-Gaussian detector
 - Difference-of-Gaussian detector
 - Combinations

- **Local Descriptors**
 - Orientation normalization
 - SIFT

B. Leibe
Motivation

• Global representations have major limitations
• Instead, describe and match only local regions
• Increased robustness to
 ➢ Occlusions
 ➢ Articulation
 ➢ Intra-category variations
Application: Image Matching

by Diva Sian

by swashford
Harder Case

by Diva Sian

by scgbt

Slide credit: Steve Seitz
Harder Still?

NASA Mars Rover images

Slide credit: Steve Seitz
Answer Below (Look for tiny colored squares)

NASA Mars Rover images with SIFT feature matches (Figure by Noah Snavely)

Slide credit: Steve Seitz
Application: Image Stitching
Application: Image Stitching

- Procedure:
 - Detect feature points in both images
Application: Image Stitching

- Procedure:
 - Detect feature points in both images
 - Find corresponding pairs
Application: Image Stitching

- **Procedure:**
 - Detect feature points in both images
 - Find corresponding pairs
 - Use these pairs to align the images

Slide credit: Darya Frolova, Denis Simakov
General Approach

1. Find a set of distinctive keypoints

2. Define a region around each keypoint

3. Extract and normalize the region content

4. Compute a local descriptor from the normalized region

5. Match local descriptors

\[d(f_A, f_B) < T \]
Common Requirements

- Problem 1:
 - Detect the same point *independently* in both images

No chance to match!

We need a repeatable detector!
Common Requirements

• Problem 1:
 - Detect the same point *independently* in both images

• Problem 2:
 - For each point correctly recognize the corresponding one

We need a reliable and distinctive descriptor!
Invariance: Geometric Transformations

Slide credit: Steve Seitz
B. Leibe
Levels of Geometric Invariance

- Translation
- Euclidean
- Similarity
- Affine
- Projective
Requirements

• Region extraction needs to be repeatable and accurate
 ➢ Invariant to translation, rotation, scale changes
 ➢ Robust or covariant to out-of-plane (≈affine) transformations
 ➢ Robust to lighting variations, noise, blur, quantization

• Locality: Features are local, therefore robust to occlusion and clutter.

• Quantity: We need a sufficient number of regions to cover the object.

• Distinctiveness: The regions should contain “interesting” structure.

• Efficiency: Close to real-time performance.
Many Existing Detectors Available

- Hessian & Harris
 - [Beaudet ‘78], [Harris ‘88]
- Laplacian, DoG
 - [Lindeberg ‘98], [Lowe ‘99]
- Harris-/Hessian-Laplace
 - [Mikolajczyk & Schmid ‘01]
- Harris-/Hessian-Affine
 - [Mikolajczyk & Schmid ‘04]
- EBR and IBR
 - [Tuytelaars & Van Gool ‘04]
- MSER
 - [Matas ‘02]
- Salient Regions
 - [Kadir & Brady ‘01]
- Others...

Those detectors have become a basic building block for many recent applications in Computer Vision.
Keypoint Localization

• **Goals:**
 - Repeatable detection
 - Precise localization
 - Interesting content

⇒ *Look for two-dimensional signal changes*
Finding Corners

- **Key property:**
 - In the region around a corner, image gradient has two or more dominant directions
- **Corners are repeatable and distinctive**

Corners as Distinctive Interest Points

- **Design criteria**
 - We should easily recognize the point by looking through a small window (*locality*)
 - Shifting the window in *any direction* should give a *large change* in intensity (*good localization*)

- "flat" region: no change in all directions
- "edge": no change along the edge direction
- "corner": significant change in all directions

Slide credit: Alexej Efros
Harris Detector Formulation

- Change of intensity for the shift \([u, v]\):

\[
E(u, v) = \sum_{x, y} w(x, y) \left[I(x + u, y + v) - I(x, y) \right]^2
\]

Window function

Shifted intensity

Intensity

Window function \(w(x, y) = \) 1 in window, 0 outside

or

Gaussian

Slide credit: Rick Szeliski
Harris Detector Formulation

- This measure of change can be approximated by:

\[E(u, v) \approx [u \ v] \ M [u \ v] \]

where \(M \) is a 2x2 matrix computed from image derivatives:

\[
M = \sum_{x,y} w(x, y) \begin{bmatrix}
I_x^2 & I_x I_y \\
I_x I_y & I_y^2
\end{bmatrix}
\]

Gradient with respect to \(x \), times gradient with respect to \(y \)

Sum over image region - the area we are checking for corner

\[
M = \begin{bmatrix}
\sum I_x I_x & \sum I_x I_y \\
\sum I_x I_y & \sum I_y I_y
\end{bmatrix} = \sum \begin{bmatrix}
I_x \\
I_y
\end{bmatrix} [I_x \ I_y]
\]

Slide credit: Rick Szeliski
Harris Detector Formulation

where M is a 2×2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Sum over image region - the area we are checking for corner

Gradient with respect to x, times gradient with respect to y

$$M = \begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} = \sum \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x I_y]$$

Slide credit: Rick Szeliski
What Does This Matrix Reveal?

• First, let’s consider an axis-aligned corner:
What Does This Matrix Reveal?

- First, let’s consider an axis-aligned corner:

\[
M = \begin{bmatrix}
\sum I_x^2 & \sum I_x I_y \\
\sum I_x I_y & \sum I_y^2
\end{bmatrix} = \begin{bmatrix}
\lambda_1 & 0 \\
0 & \lambda_2
\end{bmatrix}
\]

- This means:
 - Dominant gradient directions align with \(x \) or \(y \) axis
 - If either \(\lambda \) is close to 0, then this is not a corner, so look for locations where both are large.

- What if we have a corner that is not aligned with the image axes?
General Case

- Since M is symmetric, we have
 \[M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R \]
 (Eigenvalue decomposition)

- We can visualize M as an ellipse with axis lengths determined by the eigenvalues and orientation determined by R

Slide credit: Kristen Grauman
adapted from Darya Frolova, Denis Simakov
Interpreting the Eigenvalues

- Classification of image points using eigenvalues of M:

\[
\begin{align*}
\lambda_1 & \text{ and } \lambda_2 \text{ are small; } E \text{ is almost constant in all directions} \\
\lambda_1 & \gg \lambda_2 \\
\lambda_1 & \text{ and } \lambda_2 \text{ are large, } \lambda_1 \sim \lambda_2; \\
E & \text{ increases in all directions} \\
\lambda_1 & \gg \lambda_2
\end{align*}
\]
Corner Response Function

\[R = \det(M) - \alpha \text{trace}(M)^2 = \lambda_1 \lambda_2 - \alpha(\lambda_1 + \lambda_2)^2 \]

- **Fast approximation**
 - Avoid computing the eigenvalues
 - \(\alpha \): constant (0.04 to 0.06)

Slide credit: Kristen Grauman
Window Function \(w(x, y) \)

\[
M = \sum_{x, y} w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}
\]

- **Option 1: uniform window**
 - Sum over square window

 \[
 M = \sum_{x, y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}
 \]
 - Problem: not rotation invariant

- **Option 2: Smooth with Gaussian**
 - Gaussian already performs weighted sum

 \[
 M = g(\sigma) * \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}
 \]
 - Result is rotation invariant
Summary: Harris Detector [Harris88]

- Compute second moment matrix (autocorrelation matrix)

\[M(\sigma_I, \sigma_D) = g(\sigma_I) \ast \begin{bmatrix} I_x^2(\sigma_D) & I_xI_y(\sigma_D) \\ I_xI_y(\sigma_D) & I_y^2(\sigma_D) \end{bmatrix} \]

1. Image derivatives
2. Square of derivatives
3. Gaussian filter \(g(\sigma) \)

4. Cornerness function - two strong eigenvalues

\[R = \det[M(\sigma_I, \sigma_D)] - \alpha[\text{trace}(M(\sigma_I, \sigma_D))]^2 \]
\[= g(I_x^2)g(I_y^2) - [g(I_xI_y)]^2 - \alpha[g(I_x^2) + g(I_y^2)]^2 \]

5. Perform non-maximum suppression

Slide credit: Krystian Mikolajczyk
Harris Detector: Workflow

Slide adapted from Darya Frolova, Denis Simakov, B. Leibe
Harris Detector: Workflow

- Compute corner responses R

Slide adapted from Darya Frolova, Denis Simakov B. Leibe
Harris Detector: Workflow

- Take only the local maxima of R, where $R >$ threshold.

Slide adapted from Darya Frolova, Denis Simakov B. Leibe
Harris Detector: Workflow

- Resulting Harris points

Slide adapted from Darya Frolova, Denis Simakov B. Leibe
Harris Detector - Responses [Harris88]

Effect: A very precise corner detector.

Slide credit: Krystian Mikolajczyk
Harris Detector - Responses [Harris88]
Harris Detector - Responses [Harris88]

- Results are well suited for finding stereo correspondences

Slide credit: Kristen Grauman
Harris Detector: Properties

- Rotation invariance?

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response R is invariant to image rotation
Harris Detector: Properties

- Rotation invariance
- Scale invariance?

Not invariant to image scale!

Corner

All points will be classified as edges!

Slide credit: Kristen Grauman
Hessian Detector [Beaudet78]

- Hessian determinant

\[
\text{Hessian}(I) = \begin{bmatrix}
I_{xx} & I_{xy} \\
I_{xy} & I_{yy}
\end{bmatrix}
\]

Note: these are 2nd derivatives!

Intuition: Search for strong derivatives in two orthogonal directions

Slide credit: Krystian Mikolajczyk
Hessian Detector [Beaudet78]

- Hessian determinant

\[
Hessian(I) = \begin{bmatrix} I_{xx} & I_{xy} \\ I_{xy} & I_{yy} \end{bmatrix}
\]

\[
\det(Hessian(I)) = I_{xx}I_{yy} - I_{xy}^2
\]

In Matlab:

\[
I_{xx} \ast I_{yy} - (I_{xy})^2
\]

Slide credit: Krystian Mikolajczyk
Hessian Detector - Responses [Beaudet78]

Effect: Responses mainly on corners and strongly textured areas.

Slide credit: Krystian Mikolajczyk
Hessian Detector - Responses [Beaudet78]
You Can Try It At Home...

- For most local feature detectors, executables are available online:
- http://robots.ox.ac.uk/~vgg/research/affine
- http://www.vision.ee.ethz.ch/~surf
Affine Covariant Features

Affine Covariant Region Detectors

Input Image → Detector output → Image with displayed regions

Format:
1.0
m
u1 v1 a1 b1 c1
...
u m v m a m b m c m

Output example:
img1.harr

Parameters defining an affine region
u, v, a, b, c in a(x-u) + b(y-v) = c(x-u) + v(y-v) = 1
with (0,0) at image top left corner

Code
- provided by the authors, see publications for details and links to authors' web sites

Linux binaries
Harris-Affine & Hessian-Affine

Example of use
prompt>/h_affine.in -harraff -i img1.ppm -o img1.harrff -thres 1000

Displaying 1

http://www.robots.ox.ac.uk/~vgg/research/affine/detectors.html#binaries
References and Further Reading

- Read David Lowe’s SIFT paper
 - D. Lowe, *Distinctive image features from scale-invariant keypoints*, *IJCV* 60(2), pp. 91-110, 2004

- Good survey paper on Int. Pt. detectors and descriptors

- Try the example code, binaries, and Matlab wrappers
 - Good starting point: Oxford interest point page
 http://www.robots.ox.ac.uk/~vgg/research/affine/detectors.html#binaries