Recap: Local Feature Matching Outline

1. Find a set of distinctive keypoints
2. Define a region around each keypoint
3. Extract and normalize the region content
4. Compute a local descriptor from the normalized region
5. Match local descriptors

Recap: Recognition with Local Features

- Image content is transformed into local features that are invariant to translation, rotation, and scale
- Goal: Verify if they belong to a consistent configuration

Recap: Object Recognition by Alignment

- Assumption
 - Known object, rigid transformation compared to model image
 - If we can find evidence for such a transformation, we have recognized the object.
- You learned methods for
 - Fitting an affine transformation from \(\geq 3 \) correspondences
 - Fitting a homography from \(\geq 4 \) correspondences
 - Affine: solve a system
 - Homography: solve a system
 \[
 A t = b \\
 A h = 0
 \]
- Correspondences may be noisy and may contain outliers
 - Use RANSAC for robust fitting

Recap: Robust Estimation with RANSAC

RANSAC loop:
1. Randomly select a seed group of points on which to base transformation estimate (e.g., a group of matches)
2. Compute transformation from seed group
3. Find inliers to this transformation
4. If the number of inliers is sufficiently large, recompute least-squares estimate of transformation on all of the inliers
- Keep the transformation with the largest number of inliers
Strategy 2: Generalized Hough Transform

- Suppose our features are scale- and rotation-invariant
 - Then a single feature match provides an alignment hypothesis
 (translation, scale, orientation).

Of course, a hypothesis from a single match is unreliable.
Solution: let each match vote for its hypothesis in a Hough space
with very coarse bins.

Pose Clustering and Verification with SIFT

- To detect instances of objects from a model base:
 1. Index descriptors
 - Distinctive features narrow down possible matches
 2. Generalized Hough transform to vote for poses
 - Keypoints have record of parameters relative to model coordinate system
 3. Affine fit to check for agreement between model and image features
 - Fit and verify using features from Hough bins with 3+ votes

Object Recognition Results

- Objects recognized
- Recognition in spite of occlusion
- Background subtract for model boundaries

Location Recognition

[Lowe, IJCV'04]
Topics of This Lecture

- Indexing with Local Features
 - Inverted file index
 - Visual Vocabularies
- Part-Based Models for Object Categorization
 - Structure representations
 - Different connectivity structures
- Bag-of-Words Model
 - Use for image classification
- Implicit Shape Model
 - Generalized Hough Transform for object category detection
- Deformable Part-based Model
 - Multi-resolution models

Application: Mobile Visual Search

- Take photos of objects as queries for visual search

Large-Scale Image Matching Problem

- How can we perform this matching step efficiently?

Indexing Local Features

- Each patch / region has a descriptor, which is a point in some high-dimensional feature space (e.g., SIFT)

- When we see close points in feature space, we have similar descriptors, which indicates similar local content.

- This is of interest for many applications
 - E.g. Image matching,
 - E.g. Retrieving images of similar objects,
 - E.g. Object recognition, categorization, 3d Reconstruction,...

Indexing Local Features

- With potentially thousands of features per image, and hundreds to millions of images to search, how to efficiently find those that are relevant to a new image?

 - Low-dimensional descriptors (e.g. through PCA):
 - Can use standard efficient data structures for nearest neighbor search

 - High-dimensional descriptors
 - Approximate nearest neighbor search methods more practical

 - Inverted file indexing schemes
Indexing Local Features: Inverted File Index

- For text documents, an efficient way to find all pages on which a word occurs is to use an index...
- We want to find all images in which a feature occurs.
- To use this idea, we’ll need to map our features to "visual words".

Text Retrieval vs. Image Search

- What makes the problems similar, different?
Each point is a local descriptor, e.g. SIFT vector.

Idea: quantize the feature space.

Indexing with Visual Words

Map high-dimensional descriptors to tokens/words by quantizing the feature space

- Quantize via clustering, let cluster centers be the prototype "words"

Descriptor space

Visual Words

- Example: each group of patches belongs to the same visual word

Figure from Sivic & Zisserman, ICCV 2003

- Often used for describing scenes and objects for the sake of indexing or classification.

Sivic & Zisserman 2003; Csurka, Bray, Dance, & Fan 2004; many others.
Inverted File for Images of Visual Words

Word number List of image numbers
1 5, 10, ...
2 10, ...

When will this give us a significant gain in efficiency?

Visual Vocabulary Formation

Design choices:
- Sampling strategy: where to extract features?
- Clustering / quantization algorithm
- Unsupervised vs. supervised
- What corpus provides features (universal vocabulary?)
- Vocabulary size, number of words

Sampling Strategies

- Sparse, at interest points
- Dense, uniformly
- Randomly

- To find specific, textured objects, sparse sampling from interest points often more reliable.
- Multiple complementary interest operators offer more image coverage.
- For object categorization, dense sampling offers better coverage.

[See Nowak, Jurie & Triggs, ECCV 2006]

Example: Recognition with Vocabulary Tree

- Tree construction:

Vocabulary Tree

- Training: Filling the tree

Vocabulary Tree

- Training: Filling the tree
Vocabulary Tree

• Training: Filling the tree

Quiz Questions

• What is the computational advantage of the hierarchical representation vs. a flat vocabulary?

• What dangers does such a representation carry?

Vocabulary Tree

• Recognition

Quiz Questions

• Evaluated on large databases
 • Indexing with up to 1M images

• Online recognition for database of 50,000 CD covers
 • Retrieval in ~1s (in 2006)

• Experimental finding that large vocabularies can be beneficial for recognition

[Nister & Stewenius, CVPR'06]
Vocabulary Size

- Larger vocabularies can be advantageous...
- But what happens when the vocabulary gets too large?
 - Efficiency?
 - Robustness?

\[t_i = \frac{n_{id}}{n_d} \log \frac{N}{n_i} \]

Number of occurrences of word \(i \) in document \(d \)
Number of words in document \(d \)
Total number of documents in database
Number of occurrences of word \(i \) in whole database

tf-idf Weighting

- Term frequency - inverse document frequency
- Describe frame by frequency of each word within it, downweight words that appear often in the database
- (Standard weighting for text retrieval)

Summary: Indexing features

- Detect or sample features
- Describe features
- List of positions, scales, orientations
- Associated list of d-dimensional descriptors
- Index each one into pool of descriptors from previously seen images
- Quantize to form “bag of words” vector for the image

Application for Content Based Img Retrieval

- What if query of interest is a portion of a frame?

Video Google System

1. Collect all words within query region
2. Inverted file index to find relevant frames
3. Compare word counts
4. Spatial verification

Sivic & Zisserman, ICCV 2003
- Demo online at: http://www.robots.ox.ac.uk/~vgg/ research/vggoogle/index.html

Collecting Words Within a Query Region

- Example: Friends
Example Results

Query

More Results

Query

Retrieved shots

Applications: Specific Object Recognition

• Commercial services coming out:
 - Movie posters,
 - Book covers,
 - CD/DVD covers,
 - Video games,
 - ... [Source: http://www.kooaba.com]

Applications: Aachen Tourist Guide

Topics of This Lecture

• Indexing with Local Features
 - Inverted file index
 - Visual Vocabularies
• Part-Based Models for Object Categorization
 - Structure representations
 - Different connectivity structures
• Bag-of-Words Model
 - Use for image classification
• Implicit Shape Model
 - Generalized Hough Transform for object category detection
• Deformable Part-based Model
 - Multi-resolution models

Recognition of Object Categories

• We no longer have exact correspondences...
• On a local level, we can still detect similar parts.
• Represent objects by their parts
 ⇒ Bag-of-features
• How can we improve on this?
 ⇒ Encode structure
Part-Based Models

- Fischler & Elschlager 1973
- Model has two components
 - parts (2D image fragments)
 - structure (configuration of parts)

Different Connectivity Structures

- Bag of visual words
 - Caio et al. '04
 - Vasconcelos et al. '00
- Constellation
 - Ferras et al. '03
 - Fei-Fei et al. '03
- Star shape
 - Leibe et al. '04
 - Crandall et al. '05
 - Feng et al. '05
- k-fan (k = 2)
 - Crandall et al. '05
- Hierarchy
 - Bouchard et al. '05
- Sparse flexible model
 - Carneiro & Lowe '06

Some Class-Specific Graphs

- Articulated motion
 - People
 - Animals
- Special parameterisations
 - Limb angles

Topics of This Lecture

- Indexing with Local Features
 - Inverted file index
 - Visual Vocabularies
- Part-Based Models for Object Categorization
 - Structure representations
 - Different connectivity structures
- Bag-of-Words Model
 - Use for image classification
- Implicit Shape Model
 - Generalized Hough Transform for object category detection
- Deformable Part-based Model
 - Multi-resolution models

Analogy to Documents

- sensory, brain, visual, perception, eye, cell, optical nerve, image
- Hubel, Wiesel

Object

Bag of ‘words’

Source: ECCV 2005 short course, Li Fei-Fei
Bags of Visual Words
- Summarize entire image based on its distribution (histogram) of word occurrences.
- Analogous to bag of words representation commonly used for documents.

Comparing Bags of Words
- We build up histograms of word activations, so any histogram comparison measure can be used here.
- E.g., we can rank frames by normalized scalar product between their (possibly weighted) occurrence counts.
 - Nearest neighbor search for similar images.

Learning/Recognition with BoW Histograms
- Bag of words representation makes it possible to describe the unordered point set with a single vector (of fixed dimension across image examples).
- Provides easy way to use distribution of feature types with various learning algorithms requiring vector input.

Recap: Categorization with Bags-of-Words
- Compute the word activation histogram for each image.
- Let each such BoW histogram be a feature vector.
- Use images from each class to train a classifier (e.g., an SVM).
BoW for Object Categorization

- Works pretty well for image-level classification

Csurka et al. (2004), Willamowski et al. (2005), Grauman & Darrell (2005), Sivic et al. (2003, 2005)

Slide credit: Svetlana Lazebnik

BoW for Object Categorization

- Good performance for pure classification (object present/absent)
 - Better than more elaborate part-based models with spatial constraints...
 - What could be possible reasons why?

Slide credit: Svetlana Lazebnik

Limitations of BoW Representations

- The bag of words removes spatial layout.
- This is both a strength and a weakness.
- Why a strength?
- Why a weakness?

Slide adapted from Bill Freeman

BoW Representation: Spatial Information

- A bag of words is an orderless representation: throwing out spatial relationships between features
- Middle ground:
 - Visual “phrases” : frequently co-occurring words
 - Semi-local features : describe configuration, neighborhood
 - Let position be part of each feature
 - Count bags of words only within sub-grids of an image
 - After matching, verify spatial consistency (e.g., look at neighbors - are they the same too?)

Slide credit: Kristen Grauman

Spatial Pyramid Representation

- Representation in-between orderless BoW and global appearance

Slide credit: Svetlana Lazebnik
Spatial Pyramid Representation

- Representation in-between orderless BoW and global appearance

Summary: Bag-of-Words

- Pros:
 - Flexible to geometry / deformations / viewpoint
 - Compact summary of image content
 - Provides vector representation for sets
 - Empirically good recognition results in practice

- Cons:
 - Basic model ignores geometry - must verify afterwards, or encode via features.
 - Background and foreground mixed when bag covers whole image
 - Interest points or sampling: no guarantee to capture object-level parts.
 - Optimal vocabulary formation remains unclear.

Topics of This Lecture

- Indexing with Local Features
 - Inverted file index
 - Visual Vocabularies
- Part-Based Models for Object Categorization
 - Structure representations
 - Different connectivity structures
- Bag-of-Words Model
 - Use for image classification
- Implicit Shape Model
 - Generalized Hough Transform for object category detection
- Deformable Part-based Model
 - Multi-resolution models

References and Further Reading

- Details about the ISM approach can be found in
- Details about the DPMs can be found in
- Try the ISM Linux binaries
 - http://www.vision.ee.ethz.ch/bleibe/code
- Try the Deformable Part-based Models
 - http://www.cs.uchicago.edu/~pff/latent