Computer Vision - Lecture 1
Introduction
14.10.2013

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de

Organization

- Lecturer
 - Prof. Bastian Leibe (leibe@vision.rwth-aachen.de)

- Teaching Assistant
 - Michael Kramp (kramp@umic.rwth-aachen.de)

- Course webpage
 - http://www.vision.rwth-aachen.de/teaching/
 - Computer Vision
 - Slides will be made available on the webpage
 - There is also an L2P electronic repository

- Please subscribe to the lecture on the Campus system!
 - Important to get email announcements and L2P access!

Language

- Official course language will be English
 - If at least one English-speaking student is present.
 - If not... you can choose.

- However...
 - Please tell me when I’m talking too fast or when I should repeat something in German for better understanding!
 - You may at any time ask questions in German!
 - You may turn in your exercises in German.
 - You may answer exam questions in German.

Course Webpage

Exercises and Demos

- Exercises
 - Typically 1 exercise sheet every 2 weeks (Matlab based)
 - Hands-on experience with the algorithms from the lecture.
 - Send in your solutions the night before the exercise class.
 - Need to reach ≥50% of the points to qualify for the exam!

- Teams are encouraged!
 - You can form teams of up to 3 people for the exercises.
 - Each team should only turn in one solution.
 - But list the names of all team members in the submission.

http://www.vision.rwth-aachen.de/teaching/
Textbooks

- No single textbook for the class.
- Basic material is covered in the following two books.
 - D. Forsyth, J. Ponce
 Computer Vision - a Modern Approach
 Prentice Hall, 2002
 - R. Hartley, A. Zisserman
 Multiple View Geometry in Computer Vision
 2nd Ed., Cambridge Univ. Press, 2004
 (available in the library’s “Handapparat”)
- Additional material will be given out for some topics.
 - Tutorials and deeper introductions.
 - Application papers

How to Find Us

- Office:
 - UMIC Research Centre
 - Mies-van-der-Rohe-Strasse 15, room 124
- Office hours
 - If you have questions to the lecture, come to Michael or me.
 - My regular office hours will be announced
 - (additional slots are available upon request)
 - Send us an email before to confirm a time slot.

Questions are welcome!

Topics of Today’s Lecture

- What is computer vision?
- What does it mean to see and how do we do it?
- How can we make this computational?

- First Topic: Image Formation
 - Details in Forsyth & Ponce, chapter 1.

Why Computer Vision?

Cameras are all around us...

What is Computer Vision?

- Goal of Computer Vision
 - Enable a machine to “understand” images and videos
- Automatic understanding
 - Computing properties of the 3D world from visual data (measurement)
 - Algorithms and representations to allow a machine to recognize objects, people, scenes, and activities. (perception and interpretation)
Vision for Measurement
- Real-time stereo
- Structure from motion
- Multi-view stereo for community photo collections

Vision for Perception, Interpretation
- Objects
- Activities
- Scenes
- Locations
- Text / writing
- Faces
- Gestures
- Motions
- Emotions

Related Disciplines
- Artificial intelligence
- Graphics
- Image processing
- Algorithms
- Machine learning
- Cognitive science
- Computer vision
- Machine learning
- Algorithms
- Cognitive science
- Computer vision

Directions to Computer Vision
- **Science**
 - Foundations of perception. How do WE see?
- **Engineering**
 - How do we build systems that perceive the world?
- **Many applications**
 - Medical imaging, surveillance, entertainment, graphics, ...

Applications: Faces and Digital Cameras
- Setting camera focus via face detection
- Camera waits for everyone to smile to take a photo (Canon)
- Automatic lighting correction based on face detection

Smile detection
- The Smile Shutter flow
- Imagine a camera smart enough to catch every smile! In Smile Shutter Mode, your Cyber-shot® camera can automatically trip the shutter at just the right instant to catch the perfect expression.

Slide credit: Svetlana Lazebnik, Steve Seitz
Segmentation

- Automatic background removal from images
 - Functionality is included in Microsoft Office 2010...

Matching

- Stitch your photos together to create panoramas

Applications: Vision for Mobile Phones

- Take photos of objects as queries for visual search

 Slide credit: Svetlana Lazebnik

Applications: Vision-based Interfaces

- Games
 (Microsoft Kinect)

 Assistant technology systems

 Camera Mouse
 Boston College

 Slide adapted from Kristen Grauman

Applications: Medical & Neuroimaging

- Image guided surgery
 - fMRI data
 - Goland et al.

 Slide credit: Kristen Grauman

Applications: Visual Special Effects

- The Matrix

- MoCap for Pirates of the Caribbean, Industrial Light and Magic
 (Source: S. Seitz)

 Slide adapted from Svetlana Lazebnik, Kristen Grauman
Applications: Safety & Security

Autonomous robots Driver assistance Monitoring pools
(Poseidon) Surveillance

Pedestrian detection [MERL, Viola et al.]

Ok, Let’s Do It – Any Obstacles?

1966: Seymour Papert directs an undergraduate student to solve “the problem of computer vision” as a summer project.

Obviously, computer vision was too difficult for that...

Challenges: Many Nuisance Parameters

Illumination Object pose Clutter

Occlusions Intra-class appearance Viewpoint

Challenges: Intra-Category Variation

Challenges: Complexity

- Thousands to millions of pixels in an image
- 3,000-30,000 human recognizable object categories
- 30+ degrees of freedom in the pose of articulated objects (humans)
- Billions of images indexed by Google Image Search
- 18 billion+ prints produced from digital camera images in 2004
- 295.5 million camera phones sold in 2005
- About half of the cerebral cortex in primates is devoted to processing visual information [Felleman and van Essen 1991].

So, Should We Give Up?

NO! Very active research area with exciting progress!
Things Are Starting to Work...

• Computer Vision in realistic scenarios is becoming feasible!

Course Outline

• Image Processing Basics
• Segmentation
• Local Features & Matching
• Object Recognition and Categorization
• 3D Reconstruction
• Motion and Tracking
Course Outline

- Image Processing Basics
- Segmentation
- Local Features & Matching
- Object Recognition and Categorization
- 3D Reconstruction
- Motion and Tracking

Topics of Today’s Lecture

- What is computer vision?
- What does it mean to see and how do we do it?
- How can we make this computational?

- First Topic: Image Formation
 - Details in Forsyth & Ponce, chapter 1.

Camera Obscura

- Around 1519, Leonardo da Vinci (1452 - 1519)
 - “When images of illuminated objects ... penetrate through a small hole into a very dark room ... you will see [on the opposite wall] these objects in their proper form and color, reduced in size ... in a reversed position owing to the intersection of the rays”

Camera Obscura

- Used by artists (e.g. Vermeer 17th century) and scientists

Pinhole Camera

- (Simple) standard and abstract model today
 - Box with a small hole in it
 - Works in practice
Pinhole Size / Aperture
- Pinhole too big - many directions are averaged, blurring the image
- Pinhole too small - diffraction effects blur the image
- Generally, pinhole cameras are dark, because a very small set of rays from a particular point hits the screen.

The Reason for Lenses
- Keep the image in sharp focus while gathering light from a large area

The Thin Lens

\[
\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}
\]

Focus and Depth of Field
- Depth of field: distance between image planes where blur is tolerable

Focus and Depth of Field
- How does the aperture affect the depth of field? A smaller aperture increases the range in which the object is approximately in focus

Application: Depth from (De-)Focus
- Images from same point of view, different camera parameters
- 3D Shape / depth estimates
Field of View
• Angular measure of the portion of 3D space seen by the camera

Field of View Depends on Focal Length
• As f gets smaller, image becomes more wide angle
 - More world points project onto the finite image plane
• As f gets larger, image becomes more telescopic
 - Smaller part of the world projects onto the finite image plane

Digital Images
• Film is replaced by a sensor array
• Current technology: arrays of charge coupled devices (CCD)
• Discretize the image into pixels
• Quantize light intensities into pixel values.

Resolution
• Sensor: size of real world scene element that images to a single pixel
• Image: number of pixels
• Influences what analysis is feasible, affects best representation choice

Color Sensing in Digital Cameras
Estimate missing components from neighboring values (demosaicing)

Grayscale Image
• Problem of Computer Vision
 - How can we recognize fruits from an array of (gray-scale) numbers?
 - How can we perceive depth from an array of (gray-scale) numbers?

 - How do we humans do it? How can we make a computer do it?
Next Lectures

- First few lectures: low-level vision
 - Binary image processing
 - Filtering operations
 - Edge and structure extraction
 - Color
 - Segmentation and grouping

- Next week: Binary image processing

- Tuesday 15.10.: Exercise 1
 - Intro Matlab, basic image operations

Questions?