Perceptual and Sensory Augmented Computing
Computer Vision WS 13/14

Computer Vision - Lecture 4
Gradients & Edges
28.10.2013

Announcements
• Exercise sheet 2 is available
 » Thresholding, Morphology
 » Gaussian smoothing
 » Image gradients
 » Edge Detection
 ⇒ Deadline: Sunday night, 03.11. (next week).

• Reminder
 » You’re encouraged to form teams of up to 3 people!
 » Make it easy for Michael to correct your solutions:
 » Turn in everything as a single zip archive.
 » Use the provided Matlab framework.
 » For each exercise, you need to implement the corresponding
 apply function. If the screen output matches the expected output,
 you will get the points for the exercise; else, no points.
 » Matlab helps you to find errors (red lines under your code!)

Announcements (2)
• Exam
 » There will be a written exam.
 » I’m currently organizing the exam date...
 » We’ll organize a test exam towards the end of the semester.

• Admission requirements
 » Need to reach at least 50% of the exercise points.
 » Points are given
 » for each exercise sheet.
 » for the test exam.
 » There will be some occasions where you can collect bonus points.
 ⇒ If you follow the lecture and do the exercises regularly, you won’t have to worry about getting admitted.

Course Outline
• Image Processing Basics
 » Image Formation
 » Binary Image Processing
 » Linear Filters
 » Edge & Structure Extraction
• Segmentation
• Local Features & Matching
• Object Recognition and Categorization
• 3D Reconstruction
• Motion and Tracking

Topics of This Lecture
• Recap: Linear Filters
• Nonlinear Filters
 » Median filter
• Multi-Scale representations
 » How to properly rescale an image?
• Filters as templates
 » Correlation as template matching
• Image gradients
 » Derivatives of Gaussian
• Edge detection
 » Canny edge detector

Recap: Gaussian Smoothing
• Gaussian kernel
 \[G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{r^2+y^2}{2\sigma^2}} \]
 » Rotationally symmetric
 » Weights nearby pixels more than distant ones
 » This makes sense as ‘probabilistic’ inference about the signal
 » A Gaussian gives a good model of a fuzzy blob

Image Source: Forsyth & Ponce

B. Leibe
Recap: Smoothing with a Gaussian

- Parameter σ is the "scale" / "width" / "spread" of the Gaussian kernel and controls the amount of smoothing.

```matlab
for sigma=1:3:10
    h = fspecial('gaussian', fsize, sigma);
    out = imfilter(im, h);
    imshow(out);
    pause;
end
```

Recap: Effect of Filtering

- Noise introduces high frequencies. To remove them, we want to apply a "low-pass" filter.
- The ideal filter shape in the frequency domain would be a box. But this transfers to a spatial sinc, which has infinite spatial support.
- A compact spatial box filter transfers to a frequency sinc, which creates artifacts.
- A Gaussian has compact support in both domains. This makes it a convenient choice for a low-pass filter.

Low-Pass vs. High-Pass

Original image

Low-pass filtered

High-pass filtered

Quiz: What Effect Does This Filter Have?

Source: D. Lowe

Sharpening Filter

Original

Sharpening filter
- Accentuates differences with local average

before

after

Source: D. Lowe
Application: High Frequency Emphasis

Topics of This Lecture
- Recap: Linear Filters
- Nonlinear Filters
 - Median filter
- Multi-Scale representations
 - How to properly rescale an image?
- Filters as templates
 - Correlation as template matching
- Image gradients
 - Derivatives of Gaussian
- Edge detection
 - Canny edge detector

Non-Linear Filters: Median Filter
- Basic idea
 - Replace each pixel by the median of its neighbors.
- Properties
 - Doesn’t introduce new pixel values
 - Removes spikes: good for impulse, salt & pepper noise
 - Linear?

Median Filter
- Salt and pepper noise
- Plots of a row of the image

Median vs. Gaussian Filtering
- 3x3
- 5x5
- 7x7
- Gaussian
- Median
Topics of This Lecture

• Recap: Linear Filters
• Nonlinear Filters
 - Median filter
• Multi-Scale representations
 - How to properly rescale an image?
• Filters as templates
 - Correlation as template matching
• Image gradients
 - Derivatives of Gaussian
• Edge detection
 - Canny edge detector

Motivation: Fast Search Across Scales

Image Pyramid

High resolution

Low resolution

How Should We Go About Resampling?

Let's resample the checkerboard by taking one sample at each circle.
In the top left board, the new representation is reasonable. Top right also yields a reasonable representation.
Bottom left is all black (dubious) and bottom right has checks that are too big.

Fourier Interpretation: Discrete Sampling

• Sampling in the spatial domain is like multiplying with a spike function.

• Sampling in the frequency domain is like...
Sampling and Aliasing

- Nyquist theorem:
 - In order to recover a certain frequency f, we need to sample with at least $2f$.
 - This corresponds to the point at which the transformed frequency spectra start to overlap (the Nyquist limit).

Aliasing in Graphics

Resampling with Prior Smoothing

- Note: We cannot recover the high frequencies, but we can avoid artifacts by smoothing before resampling.

The Gaussian Pyramid

$$G_l = (G_{l+1} \ast \text{gaussian}) \downarrow 2$$

$$G_0 = \text{Image}$$

$$G_0 = (G_0 \ast \text{gaussian}) \downarrow 2$$

$$G_1 = (G_1 \ast \text{gaussian}) \downarrow 2$$

$$G_2 = (G_2 \ast \text{gaussian}) \downarrow 2$$

$$G_3 = (G_3 \ast \text{gaussian}) \downarrow 2$$

$$G_4 = (G_4 \ast \text{gaussian}) \downarrow 2$$

$$G_5 = \text{Image}$$
All the extra levels add very little overhead for memory or computation!

Summary: Gaussian Pyramid

- Construction: create each level from previous one
 - Smooth and sample
- Smooth with Gaussians, in part because
 - $G(\sigma_1) * G(\sigma_2) = G(\sqrt{\sigma_1^2 + \sigma_2^2})$
- Gaussians are low-pass filters, so the representation is redundant once smoothing has been performed.
 - There is no need to store smoothed images at the full original resolution.

The Laplacian Pyramid

- $L_4 = G_0 - \text{expand}(G_{1_4})$
- $G_i = L_i + \text{expand}(G_{1_i})$

Why is this useful?

Laplacian - Difference of Gaussian

$\text{DoG} = \text{Difference of Gaussians}$

Cheap approximation - no derivatives needed.

Topics of This Lecture

- Recap: Linear Filters
- Nonlinear Filters
 - Median filter
- Multi-Scale representations
 - How to properly rescale an image?
- Filters as templates
 - Correlation as template matching
- Image gradients
 - Derivatives of Gaussian
- Edge detection
 - Canny edge detector

Note: Filters are Templates

- Applying a filter at some point can be seen as taking a dot product between the image and some vector.
- Filtering the image is a set of dot products.
 - Insight
 - Filters look like the effects they are intended to find.
 - Filters find effects they look like.
Correlation as Template Matching

- Think of filters as a dot product of the filter vector with the image region
 - Now measure the angle between the vectors
 \[\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \langle \mathbf{b} \rangle \cos \theta \]
 \[\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{\| \mathbf{a} \| \| \mathbf{b} \|} \]
 - Angle (similarity) between vectors can be measured by normalizing the length of each vector to 1 and taking the dot product.

Vector interpretation
Differentiation and Convolution

• For the 2D function \(f(x,y) \), the partial derivative is:
 \[
 \frac{\partial f}{\partial x}(x,y) = \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon,y) - f(x,y)}{\varepsilon}
 \]

• For discrete data, we can approximate this using finite differences:
 \[
 \frac{\partial f}{\partial x}(x,y) \approx \frac{f(x+1,y) - f(x,y)}{1}
 \]

• To implement the above as convolution, what would be the associated filter?

Partial Derivatives of an Image

\[
\frac{\partial f}{\partial x}(x,y)
\]

Which shows changes with respect to \(x \)?

$$-1 \quad 1$$

$$-1 \quad 1$$

Image Gradient

• The gradient of an image:
 \[
 \nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]
 \]

• The gradient points in the direction of most rapid intensity change
 \[
 \nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]
 \]

• The edge strength is given by the gradient magnitude
 \[
 ||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}
 \]
Derivative Theorem of Convolution

\[\frac{\partial}{\partial x} (h \ast f) = \frac{\partial}{\partial x} h \ast f \]

- Differentiation property of convolution.

Derivative of Gaussian Filter

\[g \ast (h \ast I) = (g \ast h) \ast I \]

\[
\begin{bmatrix}
 0.0030 & 0.0133 & 0.0133 & 0.0030 \\
 0.0133 & 0.0596 & 0.0983 & 0.0596 & 0.0133 \\
 0.0219 & 0.0983 & 0.1621 & 0.0983 & 0.0219 \\
 0.0133 & 0.0596 & 0.0983 & 0.0596 & 0.0133 \\
 0.0030 & 0.0133 & 0.0133 & 0.0030
\end{bmatrix}
\]

Why is this preferable?

Why is this preferable?

Derivative of Gaussian Filters

- **x-direction**
- **y-direction**

Laplacian of Gaussian (LoG)

- Consider \(\frac{\partial^2}{\partial x^2} (h \ast f) \)

Summary: 2D Edge Detection Filters

- Gaussian function
- Derivative of Gaussian

- \(\nabla^2 \) is the Laplacian operator:

\[\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \]

Topics of This Lecture

- Recap: Linear Filters
- Nonlinear Filters
 - Median filter
- Multi-Scale representations
 - How to properly rescale an image?
- Filters as templates
 - Correlation as template matching
- Image gradients
- Derivatives of Gaussian
- Edge detection
 - Canny edge detector
Edge Detection

• Goal: map image from 2D array of pixels to a set of curves or line segments or contours.

• Why?

• Main idea: look for strong gradients, post-process

Designing an Edge Detector

• Criteria for an “optimal” edge detector:
 - Good detection: the optimal detector should minimize the probability of false positives (detecting spurious edges caused by noise), as well as that of false negatives (missing real edges).
 - Good localization: the edges detected should be as close as possible to the true edges.
 - Single response: the detector should return one point only for each true edge point; that is, minimize the number of local maxima around the true edge.

Gradients → Edges

Primary edge detection steps
1. Smoothing: suppress noise
2. Edge enhancement: filter for contrast
3. Edge localization
 - Determine which local maxima from filter output are actually edges vs. noise
 - Thresholding, thinning

Two issues
- At what scale do we want to extract structures?
- How sensitive should the edge extractor be?

Scale: Effect of \(\sigma \) on Derivatives

- The apparent structures differ depending on Gaussian’s scale parameter.

\(\Rightarrow \) Larger values: larger-scale edges detected
\(\Rightarrow \) Smaller values: finer features detected

Sensitivity: Recall Thresholding

- Choose a threshold \(t \)
- Set any pixels less than \(t \) to zero (off).
- Set any pixels greater than or equal to \(t \) to one (on).

\[
F_{ij}[i, j] = \begin{cases}
1, & \text{if } F[i, j] \geq t \\
0, & \text{otherwise}
\end{cases}
\]
Canny Edge Detector

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:
 - Thin multi-pixel wide “ridges” down to single pixel width
4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

- MATLAB:
  ```matlab
  >> edge(image, 'canny');
  >> help edge
  ```

Canny has shown that the first derivative of the Gaussian closely approximates the operator that optimizes the product of signal-to-noise ratio and localization.

The Canny Edge Detector

Gradient magnitude

Non-Maximum Suppression

- Check if pixel is local maximum along gradient direction, select single max across width of the edge
 - Requires checking interpolated pixels p and r
 - Linear interpolation based on gradient direction

Solution: Hysteresis Thresholding

- Hysteresis: A lag or momentum factor
- Idea: Maintain two thresholds k_{high} and k_{low}
 - Use k_{high} to find strong edges to start edge chain
 - Use k_{low} to find weak edges which continue edge chain
- Typical ratio of thresholds is roughly $k_{\text{high}} / k_{\text{low}} = 2$

Hysteresis Thresholding

Problem: pixels along this edge didn’t survive the thresholding.

Source: Forsyth & Ponce
Object Boundaries vs. Edges

Background Texture Shadows

Image Human segmentation Gradient magnitude

• Berkeley segmentation database:
 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

References and Further Reading

• Background information on linear filters and their connection with the Fourier transform can be found in Chapter 7 of F&P. Additional information on edge detection is available in Chapter 8.