Computer Vision - Lecture 9

Recognition with Global Representations II

25.11.2013

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de/
leibe@vision.rwth-aachen.de
Course Outline

- Image Processing Basics
- Segmentation & Grouping
- Recognition
 - Global Representations
- Object Categorization I
 - Sliding Window based Object Detection
- Local Features & Matching
- Object Categorization II
 - Part based Approaches
- 3D Reconstruction
- Motion and Tracking
Recap: Appearance-Based Recognition

- Basic assumption
 - Objects can be represented by a set of images ("appearances").
 - For recognition, it is sufficient to just compare the 2D appearances.
 - No 3D model is needed.

⇒ Fundamental paradigm shift in the 90’s
Recap: Recognition Using Histograms

- Histogram comparison
Recap: Comparison Measures

• Vector space interpretation
 - Euclidean distance
 - Mahalanobis distance

• Statistical motivation
 - Chi-square
 - Bhattacharyya

• Information-theoretic motivation
 - Kullback-Leibler divergence, Jeffreys divergence

• Histogram motivation
 - Histogram intersection

• Ground distance
 - Earth Movers Distance (EMD)
Recap: Recognition Using Histograms

• Simple algorithm
 1. Build a set of histograms $H=\{h_i\}$ for each known object
 ➢ More exactly, for each view of each object
 2. Build a histogram h_t for the test image.
 3. Compare h_t to each $h_i \in H$
 ➢ Using a suitable comparison measure
 4. Select the object with the best matching score
 ➢ Or reject the test image if no object is similar enough.

“Nearest-Neighbor” strategy
Recap: Multidimensional Representations

- Combination of several descriptors
 - Each descriptor is applied to the whole image.
 - Corresponding pixel values are combined into one feature vector.
 - Feature vectors are collected in multidimensional histogram.
Recap: Bayesian Recognition Algorithm

1. Build up histograms $p(m_k | o_n)$ for each training object.
2. Sample the test image to obtain $m_k, k \in K$.
 - Only small number of local samples necessary.
3. Compute the probabilities for each training object.

\[
\begin{align*}
 p(o_n | m_i) & \rightarrow m_i \\
 p(o_n | m_j) & \rightarrow m_j \\
 \vdots
\end{align*}
\]

\[
p(o_n | \text{Image}) = \frac{\prod_k p(m_k | o_n)p(o_n)}{\sum_i \prod_k p(m_k | o_i)p(o_i)}
\]

4. Select the object with the highest probability
 - Or reject the test image if no object accumulates sufficient probability.
Results: Probabilistic (Bayesian) Recognition

- **Test database**
 - 103 test objects
 - 1327 test images total
 - 607 images with scale changes and rotations for 83 objects
 - 720 images with different viewpoints for 20 objects
 - Use 6D descriptor
 - $D_x - D_y$ with $\sigma_i = \{1, 2, 4\}$
 - explicitly trained for scale changes & rotations

[Schiele & Crowley, 2000]
Experimental Evaluation

- Recognition under Partial Occlusion
 - Compare intersection, χ^2, and probabilistic recognition

- Results
 - Intersection more robust to occlusion than χ^2
 - Probabilistic recognition most robust
 - 62% visibility \Rightarrow 100% recognition
 - 33% visibility \Rightarrow 99% recognition
 - 13% visibility \Rightarrow >90% recognition

[Schiele & Crowley, 2000]
Extension: Colored Derivatives

- **Generalization:** derivatives along
 - Y axis \rightarrow intensity differences
 - C_1 axis \rightarrow red-green differences
 - C_2 axis \rightarrow blue-yellow differences

- **Application:**
 - Brand identification in video

[Hall & Crowley, 2000]
You’re Now Ready for First Applications...

- Line detection
- Circle detection
- Binary Segmentation
- Histogram based recognition
- Moment descriptors
- Skin color detection

Image Source: http://www.flickr.com/photos/angelsk/2806412807/
Topics of This Lecture

• Subspace Methods for Recognition
 ➢ Motivation

• Principal Component Analysis (PCA)
 ➢ Derivation
 ➢ Object recognition with PCA
 ➢ Eigenimages/Eigenfaces
 ➢ Limitations

• Discussion: Global representations for recognition
 ➢ Vectors of pixel intensities
 ➢ Histograms
 ➢ Localized Histograms

• Application: Image completion
Representations for Recognition

• Global object representations
 - We’ve seen histograms as one example
 - What could be other suitable representations?

• More generally, we want to obtain representations that are well-suited for
 - Recognizing a certain class of objects
 - Identifying individuals from that class (identification)

• How can we arrive at such a representation?

• Approach 1:
 - Come up with a brilliant idea and tweak it until it works.

• Can we do this more systematically?
Example: The Space of All Face Images

- When viewed as vectors of pixel values, face images are extremely high-dimensional.
 - 100x100 image = 10,000 dimensions
- However, relatively few 10,000-dimensional vectors correspond to valid face images.
- We want to effectively model the subspace of face images.
The Space of All Face Images

• We want to construct a low-dimensional linear subspace that best explains the variation in the set of face images.
Subspace Methods

- Images represented as points in a high-dim. vector space
- Valid images populate only a small fraction of the space
- Characterize subspace spanned by images

Image set \(\rightarrow \) Basis images \(\approx \) Representation coefficients

Slide adapted from Ales Leonardis
Subspace Methods

- Today’s topic: PCA

Slide credit: Ales Leonardis
Topics of This Lecture

- Subspace Methods for Recognition
 - Motivation

- Principal Component Analysis (PCA)
 - Derivation
 - Object recognition with PCA
 - Eigenimages/Eigenfaces
 - Limitations

- Discussion: Global representations for recognition
 - Vectors of pixel intensities
 - Histograms
 - Localized Histograms

- Application: Image completion

B. Leibe
Principal Component Analysis

- Given: N data points x_1, \ldots, x_N in \mathbb{R}^d
- We want to find a new set of features that are linear combinations of original ones:

$$u(x_i) = u^T(x_i - \mu)$$

(μ: mean of data points)

- What unit vector u in \mathbb{R}^d captures the most variance of the data?
Principal Component Analysis

- Direction that maximizes the variance of the projected data:

\[
\text{var}(u) = \frac{1}{N} \sum_{i=1}^{N} u^T (x_i - \mu)(u^T (x_i - \mu))^T
\]

Projection of data point

\[
= \frac{1}{N} u^T \left[\sum_{i=1}^{N} (x_i - \mu)(x_i - \mu)^T \right] u
\]

Covariance matrix of data

\[
= \frac{1}{N} u^T \Sigma u
\]

- The direction that maximizes the variance is the eigenvector associated with the largest eigenvalue of \(\Sigma \).

Slide credit: Svetlana Lazebnik
Remember: Fitting a Gaussian

- Mean and covariance matrix of data define a Gaussian model
Interpretation of PCA

- Compute eigenvectors of covariance Σ.
- Eigenvectors: main directions
- Eigenvalues: variances along eigenvector

- Result: coordinate transform to best represent the variance of the data
Interpretation of PCA

- Now, suppose we want to represent the data using just a single dimension.
 - I.e., project it onto a single axis
 - What would be the best choice for this axis?
Interpretation of PCA

- Now, suppose we want to represent the data using just a single dimension.
 - i.e., project it onto a single axis
 - What would be the best choice for this axis?
- The first eigenvector gives us the best reconstruction.
 - Direction that retains most of the variance of the data.

The diagram shows a scatter plot with two dimensions, x_1 and x_2, and a blue line representing the first eigenvector, u_1. The mean, μ, of the data points is also marked.
Properties of PCA

• It can be shown that the mean square error between x_i and its reconstruction using only m principle eigenvectors is given by the expression:

$$\sum_{j=1}^{N} \lambda_j - \sum_{j=1}^{m} \lambda_j = \sum_{j=m+1}^{N} \lambda_j$$

where λ_j are the eigenvalues

• Interpretation
 - PCA minimizes reconstruction error
 - PCA maximizes variance of projection
 - Finds a more “natural” coordinate system for the sample data.

Cumulative influence of eigenvectors

90% of variance

k eigenvectors

Slide credit: Ales Leonardis
Projection and Reconstruction

• An n-pixel image $x \in \mathbb{R}^n$ can be projected to a low-dimensional feature space $y \in \mathbb{R}^m$ by

$$y = Ux$$

• From $y \in \mathbb{R}^m$, the reconstruction of the point is U^Ty

• The error of the reconstruction is

$$\|x - U^TUx\|$$

Slide credit: Peter Belhumeur
Example: Object Representation
Principal Component Analysis

Get a compact representation by keeping only the first k eigenvectors!
Object Detection by Distance TO Eigenspace

- Is an image window ω likely to contain a learned object?
 - Project window to subspace and reconstruct as earlier.
 - Compute the distance between ω and the reconstruction (reprojection error).
 - Local minima of distance over all image locations \Rightarrow object locations
Eigenfaces: Key Idea

• Assume that most face images lie on a low-dimensional subspace determined by the first k ($k < d$) directions of maximum variance

• Use PCA to determine the vectors $u_1, \ldots u_k$ that span that subspace:

$$x \approx \mu + w_1 u_1 + w_2 u_2 + \ldots + w_k u_k$$

• Represent each face using its “face space” coordinates $(w_1, \ldots w_k)$

• Perform nearest-neighbor recognition in “face space”

Slide credit: Svetlana Lazebnik
Eigenfaces Example

- Training images x_1, \ldots, x_N
Eigenfaces Example

Top eigenvectors: u_1, \ldots, u_k

Mean: μ

Slide credit: Svetlana Lazebnik
Eigenface Example 2 (Better Alignment)
Eigenfaces Example

- Face x in “face space” coordinates:

$$x \rightarrow \left[u_1^T(x - \mu), \ldots, u_k^T(x - \mu) \right] = w_1, \ldots, w_k$$
Eigenfaces Example

- Face x in “face space” coordinates:

$$x \rightarrow [u_1^T (x - \mu), \ldots, u_k^T (x - \mu)]$$

$$= w_1, \ldots, w_k$$

- Reconstruction:

$$x = \mu + w_1 u_1 + w_2 u_2 + w_3 u_3 + w_4 u_4 + \ldots$$

Slide credit: Svetlana Lazebnik
Recognition with Eigenspaces

- **Process labeled training images:**
 - Find mean μ and covariance matrix Σ
 - Find k principal components (eigenvectors of Σ) u_1, \ldots, u_k
 - Project each training image x_i onto subspace spanned by principal components:
 $$(w_{i1}, \ldots, w_{ik}) = (u_1^T(x_i - \mu), \ldots, u_k^T(x_i - \mu))$$

- **Given novel image x:**
 - Project onto subspace:
 $$(w_1, \ldots, w_k) = (u_1^T(x - \mu), \ldots, u_k^T(x - \mu))$$
 - Optional: check reconstruction error $x - \hat{x}$ to determine whether image is really a face
 - Classify as closest training face in k-dimensional subspace
Obj. Identification by Distance IN Eigenspace

- Objects are represented as coordinates in an \(n \)-dim. eigenspace.

- Example:
 - 3D space with points representing individual objects or a manifold representing parametric eigenspace (e.g., orientation, pose, illumination).

- Estimate parameters by finding the NN in the eigenspace

Slide credit: Ales Leonardis
Parametric Eigenspace

- Object identification / pose estimation
 - Find nearest neighbor in eigenspace [Murase & Nayar, IJCV’95]
Applications: Recognition, Pose Estimation

H. Murase and S. Nayar, Visual learning and recognition of 3-d objects from appearance, IJCV 1995
Applications: Visual Inspection

Important Footnote

- Don’t really implement PCA this way!
 - Why?

1. How big is Σ?
 - $n \times n$, where n is the number of pixels in an image!
 - However, we only have m training examples, typically $m << n$.
 - $\Rightarrow \Sigma$ will at most have rank m!

2. You only need the first k eigenvectors
Singular Value Decomposition (SVD)

• Any $m \times n$ matrix A may be factored such that

\[A = U \Sigma V^T \]

\[[m \times n] = [m \times m][m \times n][n \times n] \]

• U: $m \times m$, orthogonal matrix
 - Columns of U are the eigenvectors of AA^T

• V: $n \times n$, orthogonal matrix
 - Columns are the eigenvectors of A^TA

• Σ: $m \times n$, diagonal with non-negative entries $(\sigma_1, \sigma_2, \ldots, \sigma_s)$ with $s=\min(m,n)$ are called the singular values.
 - Singular values are the square roots of the eigenvalues of both AA^T and A^TA. *Columns of U are corresponding eigenvectors!*
 - Result of SVD algorithm: $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_s$

Slide credit: Peter Belhumeur
SVD Properties

• Matlab: \([u \ s \ v] = \text{svd}(A)\)
 ➤ where \(A = u*s*v'\)

• \(r = \text{rank}(A)\)
 ➤ Number of non-zero singular values

• \(U, V\) give us orthonormal bases for the subspaces of \(A\)
 ➤ first \(r\) columns of \(U\): column space of \(A\)
 ➤ last \(m-r\) columns of \(U\): left nullspace of \(A\)
 ➤ first \(r\) columns of \(V\): row space of \(A\)
 ➤ last \(n-r\) columns of \(V\): nullspace of \(A\)

• For \(d \leq r\), the first \(d\) columns of \(U\) provide the best \(d\) dimensional basis for columns of \(A\) in least-squares sense
Performing PCA with SVD

- Singular values of A are the square roots of eigenvalues of both AA^T and A^TA.
 - Columns of U are the corresponding eigenvectors.

- And
 \[
 \sum_{i=1}^{n} a_i a_i^T = [a_1 \ldots a_n][a_1 \ldots a_n]^T = AA^T
 \]

- Covariance matrix
 \[
 \Sigma = \frac{1}{n} \sum_{i=1}^{n}(\vec{x}_i - \vec{\mu})(\vec{x}_i - \vec{\mu})^T
 \]

- So, ignoring the factor $1/n$, subtract mean image μ from each input image, create data matrix $A = (\vec{x}_i - \vec{\mu})$, and perform (thin) SVD on the data matrix.
Limitations

• Global appearance method: not robust to misalignment, background variation

• Easy fix (with considerable manual overhead)
 ➢ Need to align the training examples

Slide credit: Svetlana Lazebnik
Limitations

- PCA assumes that the data has a Gaussian distribution (mean μ, covariance matrix Σ)

 - The shape of this dataset is not well described by its principal components

Slide credit: Svetlana Lazebnik
Limitations

- The direction of maximum variance is not always good for classification
Topics of This Lecture

• Subspace Methods for Recognition
 ➢ Motivation

• Principal Component Analysis (PCA)
 ➢ Derivation
 ➢ Object recognition with PCA
 ➢ Eigenimages/Eigenfaces
 ➢ Limitations

• Discussion: Global representations for recognition
 ➢ Vectors of pixel intensities
 ➢ Histograms
 ➢ Localized Histograms

• Application: Image completion
Feature Extraction: Global Appearance

- Simple holistic descriptions of image content
 - Vector of pixel intensities

Slide adapted from Kristen Grauman
Eigenfaces: Global Appearance Description

This can also be applied in a sliding-window framework...

Generate low-dimensional representation of appearance with a linear subspace.

Project new images to “face space”.

Recognition via nearest neighbors in face space

Mean

$\mathbf{X} \approx \text{Mean} + \sum_{i=1}^{k} w_i E_i$

Training images

Eigenfaces: Global Appearance Description

B. Leibe

[Turk & Pentland, 1991]
Feature Extraction: Global Appearance

- Simple holistic descriptions of image content
 - Vector of pixel intensities
 ⇒ Pixel based representations sensitive to small shifts!
Feature Extraction: Global Appearance

- Simple holistic descriptions of image content
 - Vector of pixel intensities
 - Grayscale / color histograms
 ➞ Color or grayscale-based appearance description can be sensitive to illumination and intra-class appearance variation!

Cartoon example: an albino koala
Gradient-based Representations

- Better: Edges, contours, and (oriented) intensity gradients

![Image of gradient-based representations with multiple images showing edge detection](image_url)
Matching Edge Templates

- Example: Chamfer matching

At each window position, compute average min distance between points on template (T) and input (I).

\[D_{chamfer}(T, I) \equiv \frac{1}{|T|} \sum_{t \in T} d_I(t) \]
Gradient-based Representations

- Improved discriminance: localized gradients

- Summarize local distribution of gradients with histogram
 - Locally orderless: offers invariance to small shifts and rotations
 - Contrast-normalization: try to correct for variable illumination

Slide credit: Kristen Grauman
Gradient-based Representations: Histograms of Oriented Gradients (HOG)

Map each grid cell in the input window to a histogram counting the gradients per orientation.

[Dalal & Triggs, CVPR 2005]
Gradient-based Representations: GIST

- Global scene representation
 - Apply oriented Gabor filters at different frequencies and scales
 - Keep the mean energy per filter band within a 4x4 grid

Topics of This Lecture

- Subspace Methods for Recognition
 - Motivation

- Principal Component Analysis (PCA)
 - Derivation
 - Object recognition with PCA
 - Eigenimages/Eigenfaces
 - Limitations

- Discussion: Global representations for recognition
 - Vectors of pixel intensities
 - Histograms
 - Localized Histograms

- Application: Image completion
Application: Image Completion

Input image → Scene Descriptor → Image Collection

20 completions + blending → 200 matches

[Hays and Efros, SIGGRAPH 2007]
Input Image with Masked Pixels
Scene Descriptor

Gist scene descriptor
(Oliva and Torralba 2001)
Scene Descriptor

Gist scene descriptor (Oliva and Torralba 2001)

[Hays and Efros, SIGGRAPH 2007]
Scene Descriptor

Gist scene descriptor
(Oliva and Torralba 2001)

[Hays and Efros, SIGGRAPH 2007]
... 200 total

[Hays and Efros, SIGGRAPH 2007]
Context Matching

[Hays and Efros, SIGGRAPH 2007]
Graph cut + Poisson blending

[Hays and Efros, SIGGRAPH 2007]
Result Ranking

Assign each of the 200 results a score which is the sum of:

- The scene matching distance
- The context matching distance (color + texture)
- The graph cut cost

[Hays and Efros, SIGGRAPH 2007]
Top 20 Results

[Hays and Efros, SIGGRAPH 2007]
Perceptual and Sensory Augmented Computing

Computer Vision WS 13/14

[Hays and Efros, SIGGRAPH 2007]
[Hays and Efros, SIGGRAPH 2007]
[Hays and Efros, SIGGRAPH 2007]
References and Further Reading

• Background information on PCA can be found in Chapter 22.3 of
 - D. Forsyth, J. Ponce,
 Computer Vision - A Modern Approach.
 Prentice Hall, 2003

• Important Papers (available on webpage)
 - M. Turk, A. Pentland
 Eigenfaces for Recognition
 - P.N. Belhumeur, J.P. Hespanha, D.J. Kriegman