Computer Vision - Lecture 11

Sliding-Window based Object Detection II

02.12.2013

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de
Course Outline

• Image Processing Basics
• Segmentation & Grouping
• Recognition
 ➢ Global Representations
• Object Categorization I
 ➢ Sliding Window based Object Detection
• Local Features & Matching
• Object Categorization II
 ➢ Part based Approaches
• 3D Reconstruction
• Motion and Tracking
Topics of This Lecture

• Recap: Classification with SVMs
 - Support Vector Machines
 - HOG Detector

• Classification with Boosting
 - AdaBoost
 - Viola-Jones Face Detection

• Discussion
Recap: Sliding-Window Object Detection

- If object may be in a cluttered scene, slide a window around looking for it.

- Essentially, this is a brute-force approach with many local decisions.

Slide credit: Kristen Grauman
Recap: Support Vector Machines (SVMs)

- Discriminative classifier based on *optimal separating hyperplane* (i.e. line for 2D case)
- Maximize the *margin* between the positive and negative training examples
Recap: Non-Linear SVMs

• General idea: The original input space can be mapped to some higher-dimensional feature space where the training set is separable:

$$
\Phi: \text{x} \rightarrow \phi(\text{x})
$$

Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html
Recap: Gradient-based Representations

- Consider edges, contours, and (oriented) intensity gradients

- Summarize local distribution of gradients with histogram
 - Locally orderless: offers invariance to small shifts and rotations
 - Contrast-normalization: try to correct for variable illumination

Slide credit: Kristen Grauman
Recap: Histograms of Oriented Gradients (HOG)

Map each grid cell in the input window to a histogram counting the gradients per orientation.

Code available: http://pascal.inrialpes.fr/soft/olt/

[Dalal & Triggs, CVPR 2005]
HOG Descriptor Processing Chain

Image Window

Slide adapted from Navneet Dalal
HOG Descriptor Processing Chain

- **Optional: Gamma compression**
 - Goal: Reduce effect of overly strong gradients
 - Replace each pixel color/intensity by its square-root

\[x \rightarrow \sqrt{x} \]

⇒ Small performance improvement

Slide adapted from Navneet Dalal
HOG Descriptor Processing Chain

- Gradient computation
 - Compute gradients on all color channels and take strongest one
 - Simple finite difference filters work best (no Gaussian smoothing)

\[
\begin{bmatrix}
-1 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
-1
0
1
\end{bmatrix}
\]
HOG Descriptor Processing Chain

- **Spatial/Orientation binning**
 - Compute localized histograms of oriented gradients
 - Typical subdivision: 8×8 cells with 8 or 9 orientation bins

Slide adapted from Navneet Dalal
HOG Cell Computation Details

- **Gradient orientation voting**
 - Each pixel contributes to localized gradient orientation histogram(s)
 - Vote is weighted by the pixel’s gradient magnitude

\[\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right) \]

\[||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2} \]

- **Block-level Gaussian weighting**
 - An additional Gaussian weight is applied to each 2×2 block of cells
 - Each cell is part of 4 such blocks, resulting in 4 versions of the histogram.
HOG Cell Computation Details (2)

- Important for robustness: Tri-linear interpolation
 - Each pixel contributes to (up to) 4 neighboring cell histograms
 - Weights are obtained by bilinear interpolation in image space:

 $h(x_1, y_1) \leftarrow w \cdot \left(1 - \frac{x - x_1}{x_2 - x_1}\right) \left(1 - \frac{y - y_1}{y_2 - y_1}\right)$
 $h(x_1, y_2) \leftarrow w \cdot \left(1 - \frac{x - x_1}{x_2 - x_1}\right) \left(\frac{y - y_1}{y_2 - y_1}\right)$
 $h(x_2, y_1) \leftarrow w \cdot \left(\frac{x - x_1}{x_2 - x_1}\right) \left(1 - \frac{y - y_1}{y_2 - y_1}\right)$
 $h(x_2, y_2) \leftarrow w \cdot \left(\frac{x - x_1}{x_2 - x_1}\right) \left(\frac{y - y_1}{y_2 - y_1}\right)$

 - Contribution is further split over (up to) 2 neighboring orientation bins via linear interpolation over angles.
HOG Descriptor Processing Chain

- 2-Stage contrast normalization
 - L2 normalization, clipping, L2 normalization

Image Window

- Contrast normalize over overlapping spatial cells
- Weighted vote in spatial & orientation cells
- Compute gradients
- Gamma compression

Image Window

Slide adapted from Navneet Dalal
HOG Descriptor Processing Chain

- Feature vector construction
 - Collect HOG blocks into vector
 \[
 [\ldots, \ldots, \ldots, \ldots, \ldots]\n \]

- Collect HOGs over detection window
- Contrast normalize over overlapping spatial cells
- Weighted vote in spatial & orientation cells
- Compute gradients
- Gamma compression
- Image Window

Slide adapted from Navneet Dalal
HOG Descriptor Processing Chain

- **SVM Classification**
 - Typically using a linear SVM
 \[\ldots, \ldots, \ldots, \ldots \]
Recap: Pedestrian Detection with HOG

- Train a pedestrian template using a linear SVM
- At test time, convolve feature map with template
Recap: Non-Maximum Suppression

After multi-scale dense scan

Goal

Fusion of multiple detections

Clip detection score

Map each detection to 3D [x, y, scale] space

Apply robust mode detection, e.g. mean shift

Non-maximum suppression

Image source: Navneet Dalal, PhD Thesis
Classifier Construction: Many Choices...

Nearest Neighbor

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005,
Boiman, Shechtman, Irani 2008, ...

Neural networks

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998
...

Boosting

Viola, Jones 2001,
Torralba et al. 2004,
Opelt et al. 2006,
Benenson 2012, ...

Support Vector Machines

Vapnik, Schölkopf 1995,
Papageorgiou, Poggio ‘01,
Dalal, Triggs 2005,
Vedaldi, Zisserman 2012

Randomized Forests

Amit, Geman 1997,
Breiman 2001,
Lepetit, Fua 2006,
Gall, Lempitsky 2009,...
Boosting

- Build a strong classifier H by combining a number of “weak classifiers” h_1, \ldots, h_M, which need only be better than chance.
- Sequential learning process: at each iteration, add a weak classifier
- Flexible to choice of weak learner
 - including fast simple classifiers that alone may be inaccurate
- We’ll look at Freund & Schapire’s AdaBoost algorithm
 - Easy to implement
 - Base learning algorithm for Viola-Jones face detector

AdaBoost: Intuition

Consider a 2D feature space with positive and negative examples.

Each weak classifier splits the training examples with at least 50% accuracy.

Examples misclassified by a previous weak learner are given more emphasis at future rounds.

Figure adapted from Freund and Schapire
AdaBoost: Intuition

Weak Classifier 1

Weights Increased

Weak Classifier 2

Slide credit: Kristen Grauman
AdaBoost: Intuition

Final classifier is combination of the weak classifiers

Weak Classifier 1

Weights Increased

Weak Classifier 2

Weak classifier 3

Slide credit: Kristen Grauman
AdaBoost - Formalization

• 2-class classification problem
 - Given: training set \(X = \{x_1, \ldots, x_N\} \)
 with target values \(T = \{t_1, \ldots, t_N\} \), \(t_n \in \{-1, 1\} \).
 - Associated weights \(W = \{w_1, \ldots, w_N\} \) for each training point.

• Basic steps
 - In each iteration, AdaBoost trains a new weak classifier \(h_m(x) \)
 based on the current weighting coefficients \(W^{(m)} \).
 - We then adapt the weighting coefficients for each point
 - Increase \(w_n \) if \(x_n \) was misclassified by \(h_m(x) \).
 - Decrease \(w_n \) if \(x_n \) was classified correctly by \(h_m(x) \).
 - Make predictions using the final combined model
 \[
 H(x) = \text{sign} \left(\sum_{m=1}^{M} \alpha_m h_m(x) \right)
 \]
AdaBoost: Detailed Training Algorithm

1. Initialization: Set \(w_n^{(1)} = \frac{1}{N} \) for \(n = 1, \ldots, N \).

2. For \(m = 1, \ldots, M \) iterations

 a) Train a new weak classifier \(h_m(x) \) using the current weighting coefficients \(W^{(m)} \) by minimizing the weighted error function

 \[
 J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(x_n) \neq t_n)
 \]

 b) Estimate the weighted error of this classifier on \(X \):

 \[
 \epsilon_m = \frac{\sum_{n=1}^{N} w_n^{(m)} I(h_m(x_n) \neq t_n)}{\sum_{n=1}^{N} w_n^{(m)}}
 \]

 c) Calculate a weighting coefficient for \(h_m(x) \):

 \[
 \alpha_m = \ln \left\{ \frac{1 - \epsilon_m}{\epsilon_m} \right\}
 \]

 d) Update the weighting coefficients:

 \[
 w_n^{(m+1)} = w_n^{(m)} \exp \left\{ \alpha_m I(h_m(x_n) \neq t_n) \right\}
 \]
AdaBoost: Recognition

- Evaluate all selected weak classifiers on test data.
 \[h_1(x), \ldots, h_m(x) \]

- Final classifier is weighted combination of selected weak classifiers:
 \[H(x) = \text{sign} \left(\sum_{m=1}^{M} \alpha_m h_m(x) \right) \]

- Very simple procedure!
 - Less than 10 lines in Matlab!
 - But works extremely well in practice...
Example: Face Detection

- Frontal faces are a good example of a class where global appearance models + a sliding window detection approach fit well:
 - Regular 2D structure
 - Center of face almost shaped like a “patch”/window

- Now we’ll take AdaBoost and see how the Viola-Jones face detector works

Slide credit: Kristen Grauman
Feature extraction

“Rectangular” filters

Feature output is difference between adjacent regions

Efficiently computable with integral image: any sum can be computed in constant time

Avoid scaling images \(\rightarrow \) scale features directly for same cost

Value at \((x,y)\) is sum of pixels above and to the left of \((x,y)\)

\[
D = 1 + 4 - (2 + 3) \\
= A + (A + B + C + D) - (A + C + A + B) \\
= D
\]

Integral image

Slide credit: Kristen Grauman

[Viola & Jones, CVPR 2001]
Example

Integral Image

(x,y)

Slide credit: Svetlana Lazebnik
Large Library of Filters

Considering all possible filter parameters: position, scale, and type:

180,000+ possible features associated with each 24 x 24 window

Use AdaBoost both to select the informative features and to form the classifier

Weak classifier: \(\text{filter output} > \theta \)
AdaBoost for Feature+Classifier Selection

- Want to select the single rectangle feature and threshold that best separates positive (faces) and negative (non-faces) training examples, in terms of weighted error.

Resulting weak classifier:

$$h_t(x) = \begin{cases}
+1 & \text{if } f_t(x) > \theta_t \\
-1 & \text{otherwise}
\end{cases}$$

For next round, reweight the examples according to errors, choose another filter/threshold combo.
AdaBoost for Efficient Feature Selection

- Image features = weak classifiers
- For each round of boosting:
 - Evaluate each rectangle filter on each example
 - Sort examples by filter values
 - Select best threshold for each filter (min error)
 - Sorted list can be quickly scanned for the optimal threshold
 - Select best filter/threshold combination
 - Weight on this features is a simple function of error rate
 - Reweight examples

(first version appeared at CVPR 2001)

Slide credit: Kristen Grauman
Cascading Classifiers for Detection

- Even if the filters are fast to compute, each new image has a lot of possible windows to search.
- For efficiency, apply less accurate but faster classifiers first to immediately discard windows that clearly appear to be negative; e.g.,
 - Filter for promising regions with an initial inexpensive classifier
 - Build a chain of classifiers, choosing cheap ones with low false negative rates early in the chain

[Fleuret & Geman, IJCV 2001]
[Rowley et al., PAMI 1998]
[Viola & Jones, CVPR 2001]

Slide credit: Kristen Grauman
Cascading Classifiers

- Chain classifiers that are progressively more complex and have lower false positive rates:

![Diagram of cascading classifiers](image)

Receiver operating characteristic

- % False Pos
- % Detection

Slide credit: Svetlana Lazebnik
Viola-Jones Face Detector: Summary

- Train with 5K positives, 350M negatives
- Real-time detector using 38 layer cascade
- 6061 features in final layer
- [Implementation available in OpenCV: http://sourceforge.net/projects/opencvlibrary/]

Slide credit: Kristen Grauman
Practical Issue: Bootstrapping

- Problem: 1 face in 116’440 examined windows
 - Can easily find negative examples, but which ones are useful?
 - Apply iterative training approach
 - False positives on negative validation images are included in training set as “hard negatives”

Slide adapted from Bernd Heisele
Viola-Jones Face Detector: Results
Viola-Jones Face Detector: Results

Slide credit: Kristen Grauman
Viola-Jones Face Detector: Results

Slide credit: Kristen Grauman
You Can Try It At Home...

- The Viola & Jones detector was a huge success
 - First real-time face detector available
 - Many derivative works and improvements

- C++ implementation available in OpenCV [Lienhart, 2002]
 - http://sourceforge.net/projects/opencvlibrary/

- Matlab wrappers for OpenCV code available, e.g. here

P. Viola, M. Jones, Robust Real-Time Face Detection, IJCV, Vol. 57(2), 2004
Example Application

Frontal faces detected and then tracked, character names inferred with alignment of script and subtitles.

Everingham, M., Sivic, J. and Zisserman, A. "Hello! My name is... Buffy" - Automatic naming of characters in TV video, BMVC 2006.
http://www.robots.ox.ac.uk/~vgg/research/nface/index.html

Slide credit: Kristen Grauman
Summary: Sliding-Windows

- **Pros**
 - Simple detection protocol to implement
 - Good feature choices critical
 - Past successes for certain classes
 - Good detectors available (Viola & Jones, HOG, etc.)

- **Cons/Limitations**
 - High computational complexity
 - For example: 250,000 locations x 30 orientations x 4 scales = 30,000,000 evaluations!
 - This puts tight constraints on the classifiers we can use.
 - If training binary detectors independently, this means cost increases linearly with number of classes.
 - With so many windows, false positive rate better be low
Feature Computation Trade-Off

- **Linear SVM Detectors**
 - Same computations performed for each image window
 - It pays off to precompute the features once
 - Complex features can be used

- **AdaBoost Cascaded Detectors**
 - Potentially different computations for each window location
 - May be more efficient to evaluate the features on-the-fly for each image window
 - If cascading shall be used, simple features are preferable
What Slows Down HOG (CUDA Implem.)

- Results from fastHOG (10fps) [Prisacariu & Reid 2009]

Slide credit: Prisacariu & Reid, 2009
Limitations: Low Training Resolutions

- Many (older) S/W detectors operate on tiny images
 - Viola&Jones: 24×24 pixels
 - Torralba et al.: 32×32 pixels
 - Dalal&Triggs: 64×96 pixels (notable exception)

- Main reasons
 - Training efficiency (exhaustive feature selection in AdaBoost)
 - Evaluation speed
 - Want to recognize objects at small scales

- But...
 - Limited information content available at those resolutions
 - Not enough support to compensate for occlusions!
Limitations: Changing Aspect Ratios

- Sliding window requires fixed window size
 - Basis for learning efficient cascade classifier

- How to deal with changing aspect ratios?
 - Fixed window size
 - Wastes training dimensions
 - Adapted window size
 - Difficult to share features
 - “Squashed” views [Dalal&Triggs]
 - Need to squash test image, too
Limitations (continued)

• Not all objects are “box” shaped
Limitations (continued)

- Non-rigid, deformable objects not captured well with representations assuming a fixed 2D structure; or must assume fixed viewpoint
- Objects with less-regular textures not captured well with holistic appearance-based descriptions
Limitations (continued)

- If considering windows in isolation, context is lost

Figure credit: Derek Hoiem
Limitations (continued)

- In practice, often entails large, cropped training set (expensive)
- Requiring good match to a global appearance description can lead to sensitivity to partial occlusions

Image credit: Adam, Rivlin, & Shimshoni

K. Grauman, B. Leibe
References and Further Reading

• Read the Viola-Jones paper
 (first version appeared at CVPR 2001)

• Viola-Jones Face Detector
 - C++ implementation available in OpenCV [Lienhart, 2002]
 - http://sourceforge.net/projects/opencvlibrary/
 - Matlab wrappers for OpenCV code available, e.g. here

• HOG Detector
 - Code available: http://pascal.inrialpes.fr/soft/olt/