Announcements

- Exercise 1 due Monday next week
 - Bayes decision theory
 - Maximum Likelihood
 - Kernel density estimation / k-NN
 ⇒ Submit your results to Patrick until next Monday evening.

- Exercise modalities
 - Need to reach \(\geq 50\% \) of the points to qualify for the exam!
 - You can work in teams of up to 3 people.
 - If you work in a team
 - Turn in a single solution
 - But put both names on it
Course Outline

• Fundamentals (2 weeks)
 ✓ Bayes Decision Theory
 ✓ Probability Density Estimation

• Discriminative Approaches (5 weeks)
 ✓ Linear Discriminant Functions
 ✓ Support Vector Machines
 ✓ Ensemble Methods & Boosting
 ✓ Randomized Trees, Forests & Ferns

• Generative Models (4 weeks)
 ✓ Bayesian Networks
 ✓ Markov Random Fields
Recap: Gaussian (or Normal) Distribution

- One-dimensional case
 - Mean μ
 - Variance σ^2

$$\mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left\{ -\frac{(x - \mu)^2}{2\sigma^2} \right\}$$

- Multi-dimensional case
 - Mean μ
 - Covariance Σ

$$\mathcal{N}(x|\mu, \Sigma) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\}$$

Image source: C.M. Bishop, 2006
Recap: Maximum Likelihood Approach

- Computation of the likelihood
 - Single data point: \(p(x_n|\theta) \)
 - Assumption: all data points \(X = \{x_1, \ldots, x_n\} \) are independent
 \[
 L(\theta) = p(X|\theta) = \prod_{n=1}^{N} p(x_n|\theta)
 \]
 - Log-likelihood
 \[
 E(\theta) = -\ln L(\theta) = -\sum_{n=1}^{N} \ln p(x_n|\theta)
 \]

- Estimation of the parameters \(\theta \) (Learning)
 - Maximize the likelihood (=minimize the negative log-likelihood)
 \[\Rightarrow\text{ Take the derivative and set it to zero.}\]
 \[
 \frac{\partial}{\partial \theta} E(\theta) = - \sum_{n=1}^{N} \frac{\partial}{\partial \theta} \frac{p(x_n|\theta)}{p(x_n|\theta)} = 0
 \]
Recap: Bayesian Learning Approach

- Bayesian view:
 - Consider the parameter vector θ as a random variable.
 - When estimating the parameters, what we compute is

$$p(x|X) = \int p(x, \theta|X) d\theta$$

$$p(x, \theta|X) = p(x|\theta, X)p(\theta|X)$$

$$p(x|X) = \int p(x|\theta)p(\theta|X)d\theta$$

Assumption: given θ, this doesn’t depend on X anymore

This is entirely determined by the parameter θ (i.e. by the parametric form of the pdf).
Recap: Bayesian Learning Approach

• Discussion

Likelihood of the parametric form θ given the data set X.

Estimate for x based on parametric form θ

Prior for the parameters θ

$\int \frac{p(x|\theta) L(\theta) p(\theta)}{\int L(\theta) p(\theta) d\theta} d\theta$

Normalization: integrate over all possible values of θ

- The more uncertain we are about θ, the more we average over all possible parameter values.
Recap: Histograms

- Basic idea:
 - Partition the data space into distinct bins with widths Δ_i and count the number of observations, n_i, in each bin.

 $$p_i = \frac{n_i}{N \Delta_i}$$

 - Often, the same width is used for all bins, $\Delta_i = \Delta$.
 - This can be done, in principle, for any dimensionality D...

...but the required number of bins grows exponentially with $D!$
Recap: Kernel Methods

- **Kernel methods**
 - Place a *kernel window* k at location x and count how many data points fall inside it.

- **K-Nearest Neighbor**
 - Increase the volume V until the K next data points are found.
Topics of This Lecture

• Mixture distributions
 - Mixture of Gaussians (MoG)
 - Maximum Likelihood estimation attempt

• K-Means Clustering
 - Algorithm
 - Applications

• EM Algorithm
 - Credit assignment problem
 - MoG estimation
 - EM Algorithm
 - Interpretation of K-Means
 - Technical advice

• Applications
Mixture Distributions

- A single parametric distribution is often not sufficient
 - E.g. for multimodal data
Mixture of Gaussians (MoG)

- Sum of M individual Normal distributions

$$p(x|\theta) = \sum_{j=1}^{M} p(x|\theta_j)p(j)$$

- In the limit, every smooth distribution can be approximated this way (if M is large enough)
Mixture of Gaussians

\[p(x|\theta) = \sum_{j=1}^{M} p(x|\theta_j)p(j) \]

The likelihood of measurement \(x \) given mixture component \(j \)

\[p(x|\theta_j) = \mathcal{N}(x|\mu_j, \sigma_j^2) = \frac{1}{\sqrt{2\pi\sigma_j}} \exp \left\{ -\frac{(x - \mu_j)^2}{2\sigma_j^2} \right\} \]

Prior of component \(j \)

\[p(j) = \pi_j \text{ with } 0 \leq \pi_j \leq 1 \text{ and } \sum_{j=1}^{M} \pi_j = 1. \]

Notes

- The mixture density integrates to 1:
 \[\int p(x)dx = 1 \]

- The mixture parameters are
 \[\theta = (\pi_1, \mu_1, \sigma_1, \ldots, \pi_M, \mu_M, \sigma_M) \]
Mixture of Gaussians (MoG)

- “Generative model”

\[p(j) = \pi_j \]

Weight of mixture component

\[p(x) \]

\[p(x|\theta_j) \]

Mixture component

\[p(x|\theta) = \sum_{j=1}^{M} p(x|\theta_j)p(j) \]

Mixture density

Slide credit: Bernt Schiele
Mixture of Multivariate Gaussians

(a)

(b)

(c)

B. Leibe

Image source: C.M. Bishop, 2006
Mixture of Multivariate Gaussians

- **Multivariate Gaussians**

 \[
 p(x|\theta) = \sum_{j=1}^{M} p(x|\theta_j)p(j)
 \]

 \[
 p(x|\theta_j) = \frac{1}{(2\pi)^{D/2}|\Sigma_j|^{1/2}} \exp \left\{ -\frac{1}{2}(x - \mu_j)^T \Sigma_j^{-1}(x - \mu_j) \right\}
 \]

- **Mixture weights / mixture coefficients:**

 \[
 p(j) = \pi_j \text{ with } 0 \leq \pi_j \leq 1 \text{ and } \sum_{j=1}^{M} \pi_j = 1
 \]

- **Parameters:**

 \[
 \theta = (\pi_1, \mu_1, \Sigma_1, \ldots, \pi_M, \mu_M, \Sigma_M)
 \]
Mixture of Multivariate Gaussians

• “Generative model”

\[
p(j) = \pi_j \\
p(x|\theta) = \sum_{j=1}^{3} \pi_j p(x|\theta_j)
\]
Mixture of Gaussians - 1st Estimation Attempt

- Maximum Likelihood
 - Minimize $E = -\ln L(\theta) = -\sum_{n=1}^{N} \ln p(x_n|\theta)$
 - Let’s first look at μ_j:

 $\frac{\partial E}{\partial \mu_j} = 0$

- We can already see that this will be difficult, since

\[
\ln p(X|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(x_n|\mu_k, \Sigma_k) \right\}
\]

This will cause problems!
Mixture of Gaussians - 1st Estimation Attempt

- **Minimization:**

\[
\frac{\partial E}{\partial \mu_j} = - \sum_{n=1}^{N} \frac{\partial}{\partial \mu_j} p(x_n | \theta_j) \cdot \frac{\sum_{k=1}^{K} p(x_n | \theta_k)}{\sum_{k=1}^{K} p(x_n | \theta_k)}
\]

\[
= - \sum_{n=1}^{N} \left(\Sigma^{-1} (x_n - \mu_j) \cdot \frac{p(x_n | \theta_j)}{\sum_{k=1}^{K} p(x_n | \theta_k)} \right)
\]

\[
= - \Sigma^{-1} \sum_{n=1}^{N} (x_n - \mu_j) \cdot \frac{\pi_j N(x_n | \mu_j, \Sigma_j)}{\sum_{k=1}^{K} \pi_k N(x_n | \mu_k, \Sigma_k)}
\]

\[
= 0
\]

- **We thus obtain**

\[
\Rightarrow \mu_j = \frac{\sum_{n=1}^{N} \gamma_j(x_n) x_n}{\sum_{n=1}^{N} \gamma_j(x_n)}
\]

\[
\text{“responsibility” of component } j \text{ for } x_n
\]

B. Leibe
Mixture of Gaussians - 1st Estimation Attempt

- But...

\[\mu_j = \frac{\sum_{n=1}^{N} \gamma_j(x_n) x_n}{\sum_{n=1}^{N} \gamma_j(x_n)} \]

\[\gamma_j(x_n) = \frac{\pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)}{\sum_{k=1}^{N} \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)} \]

- I.e. there is no direct analytical solution!

\[\frac{\partial E}{\partial \mu_j} = f(\pi_1, \mu_1, \Sigma_1, \ldots, \pi_M, \mu_M, \Sigma_M) \]

- Complex gradient function (non-linear mutual dependencies)
- Optimization of one Gaussian depends on all other Gaussians!
- It is possible to apply iterative numerical optimization here, but in the following, we will see a simpler method.

B. Leibe
Mixture of Gaussians - Other Strategy

- Other strategy:

- Observed data:
- Unobserved data:
 - Unobserved = “hidden variable”: \(j | x \)

\[
\begin{align*}
 h(j = 1 | x_n) &= 1 1 1 1 \\
 h(j = 2 | x_n) &= 0 0 0 0
\end{align*}
\]
Mixture of Gaussians - Other Strategy

- Assuming we knew the values of the hidden variable...

\[f(x) \]

\[\begin{align*}
 h(j = 1 | x_n) &= 1 \quad 111 \\
 h(j = 2 | x_n) &= 0 \quad 000
\end{align*} \]

\[\mu_1 = \frac{\sum_{n=1}^{N} h(j = 1 | x_n) x_n}{\sum_{i=1}^{N} h(j = 1 | x_n)} \quad \mu_2 = \frac{\sum_{n=1}^{N} h(j = 2 | x_n) x_n}{\sum_{i=1}^{N} h(j = 2 | x_n)} \]

ML for Gaussian #1
ML for Gaussian #2

Slide credit: Bernt Schiele
Mixture of Gaussians - Other Strategy

- Assuming we knew the mixture components...

- Bayes decision rule: Decide $j = 1$ if

$$p(j = 1|x_n) > p(j = 2|x_n)$$
Mixture of Gaussians - Other Strategy

- Chicken and egg problem - what comes first?

We don’t know any of those!

In order to break the loop, we need an estimate for j.
 - E.g. by clustering...
Clustering with Hard Assignments

- Let’s first look at clustering with “hard assignments”
Topics of This Lecture

- Mixture distributions
 - Mixture of Gaussians (MoG)
 - Maximum Likelihood estimation attempt

- K-Means Clustering
 - Algorithm
 - Applications

- EM Algorithm
 - Credit assignment problem
 - MoG estimation
 - EM Algorithm
 - Interpretation of K-Means
 - Technical advice

- Applications
K-Means Clustering

• Iterative procedure
 1. Initialization: pick K arbitrary centroids (cluster means)
 2. Assign each sample to the closest centroid.
 3. Adjust the centroids to be the means of the samples assigned to them.
 4. Go to step 2 (until no change)

• Algorithm is guaranteed to converge after finite #iterations.
 - Local optimum
 - Final result depends on initialization.

Slide credit: Bernt Schiele
K-Means - Example with K=2

B. Leibe

Image source: C.M. Bishop, 2006
K-Means Clustering

- K-Means optimizes the following objective function:

\[J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \| x_n - \mu_k \|^2 \]

where

\[r_{nk} = \begin{cases}
1 & \text{if } k = \text{arg min}_j \| x_n - \mu_j \|^2 \\
0 & \text{otherwise.}
\end{cases} \]

- In practice, this procedure usually converges quickly to a local optimum.
Example Application: Image Compression

Take each pixel as one data point.

Set the pixel color to the cluster mean.

K-Means Clustering

Image source: C.M. Bishop, 2006
Example Application: Image Compression

$K = 2$ $K = 3$ $K = 10$ Original image

Image source: C.M. Bishop, 2006
Summary K-Means

- **Pros**
 - Simple, fast to compute
 - Converges to local minimum of within-cluster squared error

- **Problem cases**
 - Setting k?
 - Sensitive to initial centers
 - Sensitive to outliers
 - Detects spherical clusters only

- **Extensions**
 - Speed-ups possible through efficient search structures
 - General distance measures: k-medoids
Topics of This Lecture

- Mixture distributions
 - Mixture of Gaussians (MoG)
 - Maximum Likelihood estimation attempt

- K-Means Clustering
 - Algorithm
 - Applications

- EM Algorithm
 - Credit assignment problem
 - MoG estimation
 - EM Algorithm
 - Interpretation of K-Means
 - Technical advice

- Applications
Credit Assignment Problem

- "Credit Assignment Problem"
 - If we are just given \(x \), we don’t know which mixture component this example came from

 \[
 p(x|\theta) = \sum_{j=1}^{2} \pi_j p(x|\theta_j)
 \]
 - We can however evaluate the posterior probability that an observed \(x \) was generated from the first mixture component.

 \[
 p(j = 1|x, \theta) = \frac{p(j = 1, x|\theta)}{p(x|\theta)}
 \]

 \[
 p(j = 1, x|\theta) = p(x|j = 1, \theta)p(j = 1) = p(x|\theta_1)p(j = 1)
 \]

 \[
 p(j = 1|x, \theta) = \frac{p(x|\theta_1)p(j = 1)}{\sum_{j=1}^{2} p(x|\theta_j)p(j)}
 \]
Mixture Density Estimation Example

- **Example**
 - Assume we want to estimate a 2-component MoG model
 \[
 p(x|\theta) = \sum_{j=1}^{2} \pi_j p(x|\theta_j)
 \]
 \[
 = \pi_1 p(x|\mu_1, \Sigma_1) + \pi_2 p(x|\mu_2, \Sigma_2)
 \]
 - If each sample in the training set were labeled \(j \in \{1,2\} \) according to which mixture component (1 or 2) had generated it, then the estimation would be easy.
 - Labeled examples
 - no credit assignment problem.

Slide credit: Bernt Schiele
Mixture Density Estimation Example

• When examples are labeled, we can estimate the Gaussians independently
 - Using Maximum Likelihood estimation for single Gaussians.

• Notation
 - Let \(l_i \) be the label for sample \(x_i \)
 - Let \(N \) be the number of samples
 - Let \(N_j \) be the number of samples labeled \(j \)
 - Then for each \(j \in \{1, 2\} \) we set

\[
\hat{\pi}_j \leftarrow \frac{\hat{N}_j}{N}
\]

\[
\hat{\mu}_j \leftarrow \frac{1}{\hat{N}_j} \sum_{i: l_i = j} x_i
\]

\[
\hat{\Sigma}_j \leftarrow \frac{1}{\hat{N}_j} \sum_{i: l_i = j} (x_i - \hat{\mu}_j)(x_i - \hat{\mu}_j)^T
\]
Mixture Density Estimation Example

• Of course, we don’t have such labels l_i...

 ➢ But we can guess what the labels might be based on our current mixture distribution estimate (credit assignment problem).

 ➢ We get **soft labels** or posterior probabilities of which Gaussian generated which example:

 $$\gamma_j(x_i) = p(l_i = j|x_i, \theta) \sum_{j=1}^{2} \gamma_j(x_i) = 1 \quad \forall i = 1, \ldots, N$$

 ➢ When the Gaussians are almost identical (as in the figure), then $\gamma_1(x_i) \approx \gamma_2(x_i)$ for almost any given sample x_i.

 ⇒ Even small differences can help to determine how to update the Gaussians.
EM Algorithm

- Expectation-Maximization (EM) Algorithm
 - **E-Step**: softly assign samples to mixture components
 \[
 \gamma_j(x_n) \leftarrow \frac{\pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)}{\sum_{k=1}^{K} \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)} \quad \forall j = 1, \ldots, K, \quad n = 1, \ldots, N
 \]
 - **M-Step**: re-estimate the parameters (separately for each mixture component) based on the soft assignments
 \[
 \hat{N}_j \leftarrow \sum_{n=1}^{N} \gamma_j(x_n) = \text{soft number of samples labeled } j
 \]
 \[
 \hat{n}^\text{new}_j \leftarrow \frac{\hat{N}_j}{N}
 \]
 \[
 \hat{\mu}_j^\text{new} \leftarrow \frac{1}{\hat{n}^\text{new}_j} \sum_{n=1}^{N} \gamma_j(x_n)x_n
 \]
 \[
 \hat{\Sigma}_j^\text{new} \leftarrow \frac{1}{\hat{n}^\text{new}_j} \sum_{n=1}^{N} \gamma_j(x_n)(x_n - \hat{\mu}_j^\text{new})(x_n - \hat{\mu}_j^\text{new})^T
 \]
EM Algorithm - An Example

Image source: C.M. Bishop, 2006
EM - Technical Advice

- When implementing EM, we need to take care to avoid singularities in the estimation!
 - Mixture components may collapse on single data points.
 - E.g. consider the case $\sum_k = \sigma_k^2 I$ (this also holds in general)
 - Assume component j is exactly centered on data point x_n. This data point will then contribute a term in the likelihood function

$$
\mathcal{N}(x_n|x_n, \sigma_j^2 I) = \frac{1}{\sqrt{2\pi}\sigma_j}
$$

- For $\sigma_j \to 0$, this term goes to infinity!

⇒ Need to introduce regularization
 - Enforce minimum width for the Gaussians

Image source: C.M. Bishop, 2006
EM - Technical Advice (2)

• EM is very sensitive to the initialization
 ➢ Will converge to a local optimum of E.
 ➢ Convergence is relatively slow.

⇒ Initialize with k-Means to get better results!
 ➢ k-Means is itself initialized randomly, will also only find a local optimum.
 ➢ But convergence is much faster.

• Typical procedure
 ➢ Run k-Means M times (e.g. $M = 10-100$).
 ➢ Pick the best result (lowest error J).
 ➢ Use this result to initialize EM
 - Set μ_j to the corresponding cluster mean from k-Means.
 - Initialize Σ_j to the sample covariance of the associated data points.
K-Means Clustering Revisited

• Interpreting the procedure
 1. Initialization: pick K arbitrary centroids (cluster means)
 2. Assign each sample to the closest centroid. (E-Step)
 3. Adjust the centroids to be the means of the samples assigned to them. (M-Step)
 4. Go to step 2 (until no change)
K-Means Clustering Revisited

- K-Means clustering essentially corresponds to a Gaussian Mixture Model (MoG or GMM) estimation with EM whenever
 - The covariances are of the K Gaussians are set to $\Sigma_j = \sigma^2 I$
 - For some small, fixed σ^2

K-Means

MoG

Slide credit: Bernt Schiele

B. Leibe
Summary: Gaussian Mixture Models

• Properties
 - Very general, can represent any (continuous) distribution.
 - Once trained, very fast to evaluate.
 - Can be updated online.

• Problems / Caveats
 - Some numerical issues in the implementation
 ⇒ Need to apply regularization in order to avoid singularities.
 - EM for MoG is computationally expensive
 - Especially for high-dimensional problems!
 - More computational overhead and slower convergence than k-Means
 - Results very sensitive to initialization
 ⇒ Run k-Means for some iterations as initialization!
 - Need to select the number of mixture components K.
 ⇒ Model selection problem (see Lecture 10)
Topics of This Lecture

- Mixture distributions
 - Mixture of Gaussians (MoG)
 - Maximum Likelihood estimation attempt

- K-Means Clustering
 - Algorithm
 - Applications

- EM Algorithm
 - Credit assignment problem
 - MoG estimation
 - EM Algorithm
 - Interpretation of K-Means
 - Technical advice

- Applications
Applications

- Mixture models are used in many practical applications.
 - Wherever distributions with complex or unknown shapes need to be represented...

- Popular application in Computer Vision
 - Model distributions of pixel colors.
 - Each pixel is one data point in e.g. RGB space.
 ⇒ Learn a MoG to represent the class-conditional densities.
 ⇒ Use the learned models to classify other pixels.

Image source: C.M. Bishop, 2006
Application: Background Model for Tracking

- Train background MoG for each pixel
 - Model “common“ appearance variation for each background pixel.
 - Initialization with an empty scene.
 - Update the mixtures over time
 - Adapt to lighting changes, etc.

- Used in many vision-based tracking applications
 - Anything that cannot be explained by the background model is labeled as foreground (=object).
 - Easy segmentation if camera is fixed.

B. Leibe

Image Source: Daniel Roth, Tobias Jäggli
Application: Image Segmentation

- User assisted image segmentation
 - User marks two regions for foreground and background.
 - Learn a MoG model for the color values in each region.
 - Use those models to classify all other pixels.
 ⇒ Simple segmentation procedure (building block for more complex applications)
Application: Color-Based Skin Detection

- Collect training samples for skin/non-skin pixels.
- Estimate MoG to represent the skin/non-skin densities.

Classify skin color pixels in novel images

Interested to Try It?

• Here’s how you can access a webcam in Matlab:

```matlab
function out = webcam
% uses "Image Acquisition Toolbox",
adaptorName = 'winvideo';
vidFormat = 'I420_320x240';
vidObj1= videoinput(adaptorName, 1, vidFormat);
set(vidObj1, 'ReturnedColorSpace', 'rgb');
set(vidObj1, 'FramesPerTrigger', 1);
out = vidObj1 ;

getObj = webcam();
img = getsnapshot(getObj);
```
References and Further Reading

• More information about EM and MoG estimation is available in Chapter 2.3.9 and the entire Chapter 9 of Bishop’s book (recommendable to read).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

• Additional information
 - Original EM paper:
 - EM tutorial: