Recap: Linear Discriminant Functions

- Basic idea
 - Directly encode decision boundary
 - Minimize misclassification probability directly.

- Linear discriminant functions
 \[y(x) = w^T x + w_0 \]
 - \(w, w_0 \) define a hyperplane in \(\mathbb{R}^2 \).
 - If a data set can be perfectly classified by a linear discriminant, then we call it linearly separable.

Recap: Least-Squares Classification

- Simplest approach
 - Directly try to minimize the sum-of-squares error
 \[E(w) = \sum_{n=1}^{N} (y(x_n) - t_n)^2 \]
 \[E_D(W) = \frac{1}{2} \text{trace} \left((XW - T)^T(XW - T) \right) \]
 - Setting the derivative to zero yields
 \[W = (X^T X)^{-1} X^T T = (X^T T)^{-1} X^T T \]
 - We then obtain the discriminant function as
 \[y(x) = W^T x = T^T \left(\frac{x}{x} \right) \]
 - Exact, closed-form solution for the discriminant function parameters.

Recap: Problems with Least Squares

- Least-squares is very sensitive to outliers!
 - The error function penalizes predictions that are “too correct”.

Recap: Generalized Linear Models

- Generalized linear model
 \[y(x) = g(w^T x + w_0) \]
 - \(g(\cdot) \) is called an activation function and may be nonlinear.
 - The decision surfaces correspond to
 \[y(x) = \text{const} \iff w^T x + w_0 = \text{const} \]
 - If \(g \) is monotonous (which is typically the case), the resulting decision boundaries are still linear functions of \(x \).

- Advantages of the non-linearity
 - Can be used to bound the influence of outliers and “too correct” data points.
 - When using a sigmoid for \(g(\cdot) \), we can interpret the \(y(x) \) as posterior probabilities.
Recap: Linear Separability
- Up to now: restrictive assumption
 - Only consider linear decision boundaries
- Classical counterexample: XOR

Recap: Extension to Nonlinear Basis Fcts.
- Generalization
 - Transform vector x with M nonlinear basis functions $\phi_j(x)$:
 $y_k(x) = \sum_{j=1}^{M} w_{kj} \phi_j(x) + w_{k0}$
- Advantages
 - Transformation allows non-linear decision boundaries.
 - By choosing the right ϕ, every continuous function can (in principle) be approximated with arbitrary accuracy.
- Disadvantage
 - The error function can in general no longer be minimized in closed form.
 \Rightarrow Minimization with Gradient Descent

Recap: Gradient Descent
- Iterative minimization
 - Start with an initial guess for the parameter values $w_k(0)$.
 - Move towards a (local) minimum by following the gradient.
- Basic strategies
 - "Batch learning"
 $w_{kj}^{(r+1)} = w_{kj}^{(r)} - \eta \frac{\partial E(w)}{\partial w_{kj}} |_{w^{(r)}}$
 - "Sequential updating"
 $w_{kj}^{(r+1)} = w_{kj}^{(r)} - \eta \frac{\partial E_n(w)}{\partial w_{kj}} |_{w^{(r)}}$
 where $E(w) = \sum_{n=1}^{N} E_n(w)$
- Example: Quadratic error function
 $E(w) = \sum (y(x_n; w) - t_n)^2$
- Sequential updating leads to delta rule (=LMS rule)
 $w_{kj}^{(r+1)} = w_{kj}^{(r)} - \eta (y_k(x_n; w) - t_{kn}) \phi_j(x_n)$
 $= w_{kj}^{(r)} - \eta \delta_{kn} \phi_j(x_n)$
 where $\delta_{kn} = y_k(x_n; w) - t_{kn}$
 \Rightarrow Simply feed back the input data point, weighted by the classification error.

Recap: Gradient Descent
- Cases with differentiable, non-linear activation function
 $y_k(x) = g(a_k) = g \left(\sum_{j=0}^{M} w_{kj} \phi_j(x_n) \right)$
- Gradient descent (again with quadratic error function)
 $\frac{\partial E_n(w)}{\partial w_{kj}} = \frac{\partial g(a_k)}{\partial w_{kj}} (y_k(x_n; w) - t_{kn}) \phi_j(x_n)$
 $w_{kj}^{(r+1)} = w_{kj}^{(r)} - \eta \frac{\partial E_n(w)}{\partial w_{kj}} |_{w^{(r)}}$
 $\delta_{kn} = \frac{\partial g(a_k)}{\partial w_{kj}} (y_k(x_n; w) - t_{kn})$

Topics of This Lecture
- Fisher’s linear discriminant (FLD)
 - Classification as dimensionality reduction
 - Linear discriminant analysis
 - Multiple discriminant analysis
 - Applications
- Logistic Regression
 - Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
 - Gradient descent
 - Iteratively Reweighted Least Squares
- Note on Error Functions
Classification as Dimensionality Reduction

• Classification as dimensionality reduction

 - We can interpret the linear classification model as a projection onto a lower-dimensional space.
 - E.g., take the D-dimensional input vector x and project it down to one dimension by applying the function $y = W^T x$
 - If we now place a threshold at $y \geq -w_0$, we obtain our standard two-class linear classifier.
 - The classifier will have a lower error the better this projection separates the two classes.

⇒ New interpretation of the learning problem

• Try to find the projection vector w that maximizes the class separation.

Two questions

- How to measure class separation?
- How to find the best projection (with maximal class separation)?

Problems with this approach

1. This expression can be made arbitrarily large by increasing $||w||$.
 ⇒ Need to enforce additional constraint $||w|| = 1$.

2. The criterion may result in bad separation if the clusters have elongated shapes.

Classification as Dimensionality Reduction

• Measuring class separation

 - We could simply measure the separation of the class means.
 ⇒ Choose w so as to maximize $(m_2 - m_1) = W^T (m_2 - m_1)$

• Problems with this approach

 1. This expression can be made arbitrarily large by increasing $||w||$.
 ⇒ Need to enforce additional constraint $||w|| = 1$.
 ⇒ This constrained minimization results in $w \propto (m_2 - m_1)$
 2. The criterion may result in bad separation if the clusters have elongated shapes.

Fisher’s Linear Discriminant Analysis (FLD)

• Better idea:

 - Find a projection that maximizes the ratio of the between-class variance to the within-class variance:
 $$J(w) = \frac{(m_2 - m_1)^2}{s_1 + s_2}$$
 with $s^2_k = \sum y_n (m_n - m_k)^2$

 - Usually, this is written as
 $$J(w) = \frac{w^T S_B w}{w^T S_W w}$$

 - where
 $$S_B = (m_2 - m_1)(m_2 - m_1)^T$$
 $$S_W = \sum_{k=1}^{K} \sum_{x_n \in C_k} (x_n - m_k)(x_n - m_k)^T$$

 - between-class scatter matrix
 - within-class scatter matrix

Multiple Discriminant Analysis

• Generalization to K classes

 $$J(W) = \frac{|W^T S_B W|}{|W^T S_W W|}$$

 - where
 $$W = [w_1, \ldots, w_K]$$
 $$m = \frac{1}{N} \sum_{n=1}^{N} x_m = \frac{1}{N} \sum_{k=1}^{K} N_k m_k$$
 $$S_B = \sum_{k=1}^{K} N_k (m_k - m)(m_k - m)^T$$
 $$S_W = \sum_{k=1}^{K} \sum_{x_n \in C_k} (x_n - m_k)(x_n - m_k)^T$$

 - between-class scatter matrix
 - within-class scatter matrix

Image source: C.M. Bishop, 2006

Minimize distance within a class

Maximize distance between classes

Classification as Dimensionality Reduction

Image source: C.M. Bishop, 2006

Classification function:

$$y(x) = W^T x + w_0 \begin{cases} \geq 0 & \text{Class 1} \\ < 0 & \text{Class 2} \end{cases}$$

where $w_0 = -W^T m$
Maximizing $J(W)$

- Generalized eigenvalue problem
 \[J(W) = |W^T S_i W| \]
 \[|W^T S_w W| \]
 - The columns of the optimal W are the eigenvectors corresponding to the largest eigenvalues of $S_i w_i = \lambda_i S_w w_i$
 - Defining $v = S_{i}^{-\frac{1}{2}} w_i$, we get $S_{i}^{-\frac{1}{2}} S_w^{-\frac{1}{2}} v = \lambda v$
 which is a regular eigenvalue problem.
 - Solve to get eigenvectors of v, then from that of w.
 - For the K-class case we obtain (at most) $K-1$ projections.

- (i.e. eigenvectors corresponding to non-zero eigenvalues.)

What Does It Mean?

- What does it mean to apply a linear classifier?
 \[y(x) = w^T x \]
 Weight vector
 Input vector

- Classifier interpretation
 - The weight vector has the same dimensionality as x.
 - Positive contributions where $\text{sign}(w_i) = \text{sign}(w_j)$.
 - The weight vector identifies which input dimensions are important for positive or negative classification (large w_i) and which ones are irrelevant (near-zero w_i).
 - If the inputs x are normalized, we can interpret w as a “template” vector that the classifier tries to match.
 \[w^T x = |w||x| \cos \theta \]

Example Application: Fisherfaces

- Visual discrimination task
 - Training data:
 \[C_1: \text{Subjects with glasses} \quad C_2: \text{Subjects without glasses} \]
 - Test:
 - glasses?

Take each image as a vector of pixel values and apply FLD...

Summary: Fisher’s Linear Discriminant

- Properties
 - Simple method for dimensionality reduction, preserves class discriminability.
 - Can use parametric methods in reduced-dim. space that might not be feasible in original higher-dim. space.
 - Widely used in practical applications.

- Restrictions / Caveats
 - Not possible to get more than $K-1$ projections.
 - FLD reduces the computation to class means and covariances.
 - Implicit assumption that class distributions are unimodal and well-approximated by a Gaussian/hyperellipsoid.

Fisherases: Interpretability

- Resulting weight vector for “Glasses/NoGlasses”

Topics of This Lecture

- Fisher’s Linear Discriminant (FLD)
 - Classification as dimensionality reduction
 - Linear discriminant analysis
 - Multiple discriminant analysis
 - Applications

- Logistic Regression
 - Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
 - Gradient descent
 - Iteratively Reweighted Least Squares

- Noise on Error Functions
Probabilistic Discriminative Models

- We have seen that we can write
 \[p(C_1|x) = \sigma(a) = \frac{1}{1 + \exp(-a)} \]
 logistic sigmoid function

- We can obtain the familiar probabilistic model by setting
 \[a = \ln \frac{p(x|C_1)p(C_1)}{p(x|C_2)p(C_2)} \]

- Or we can use generalized linear discriminant models
 \[a = w^T x \]
 or \[a = w^T \phi(x) \]

Comparison

- Let’s look at the number of parameters...
 - Assume we have an \(M \)-dimensional feature space \(\phi \).
 - And assume we represent \(p(C_1) \) and \(p(C_2) \) by Gaussians.
 - How many parameters do we need?
 - For the means: \(2M \)
 - For the covariances: \(MMM+1/2 \)
 - Together with the class priors, this gives \((M+1)(M+1) \) parameters!
 - How many parameters do we need for logistic regression?
 - \[p(C_1|\phi) = y(\phi) = \sigma(w^T \phi) \]
 - Just the values of \(w \) as \(M \) parameters.

⇒ **For large \(M \), logistic regression has clear advantages!**

Logistic Regression

- Let’s consider a data set \(\{ \phi_n, t_n \} \) with \(n = 1, \ldots, N \), where \(\phi_n = \phi(x_n) \) and \(t_n \in \{0,1\} \), \(t = (t_1, \ldots, t_N)^T \).

- With \(y_n = p(C_1|\phi_n) \), we can write the likelihood as
 \[p(t|w) = \prod_{n=1}^{N} y_n^{t_n} (1 - y_n)^{1-t_n} \]

- Define the error function as the negative log-likelihood
 \[E(w) = -\ln p(t|w) \]
 \[= -\sum_{n=1}^{N} \{ t_n \ln y_n + (1 - t_n) \ln (1 - y_n) \} \]

 - This is the so-called cross-entropy error function.

Gradient of the Error Function

- Error function
 \[E(w) = -\sum_{n=1}^{N} \{ t_n \ln y_n + (1 - t_n) \ln (1 - y_n) \} \]

- Gradient
 \[\nabla E(w) = -\sum_{n=1}^{N} \left\{ t_n \frac{\partial}{\partial \phi_n} \ln y_n + (1 - t_n) \frac{\partial}{\partial \phi_n} \ln (1 - y_n) \right\} \]
 \[= -\sum_{n=1}^{N} \left\{ \frac{t_n}{y_n} \phi_n - \frac{1 - t_n}{1 - y_n} \phi_n \right\} \]
 \[= -\sum_{n=1}^{N} \left\{ \frac{t_n}{y_n} \phi_n - \frac{1 - t_n}{1 - y_n} \phi_n \right\} \]
 \[= \sum_{n=1}^{N} \{ y_n - t_n \} \phi_n \]

Probabilistic Discriminative Models

- In the following, we will consider models of the form
 \[p(C_1|\phi) = y(\phi) = \sigma(w^T \phi) \]
 with \[p(C_2|\phi) = 1 - p(C_1|\phi) \]

- This model is called logistic regression.

- Why should we do this? What advantage does such a model have compared to modeling the probabilities?
 \[p(C_1|\phi) = \frac{p(\phi|C_1)p(C_1)}{p(\phi|C_1)p(C_1) + p(\phi|C_2)p(C_2)} \]

- Any ideas?
Gradient of the Error Function

- Gradient for logistic regression
 \[\nabla E(w) = \sum_{n=1}^{N} (y_n - t_n) \phi_n \]

- Does this look familiar to you?
- This is the same result as for the Delta (=LMS) rule
 \[w^{r+1}_{kj} = w^{r}_{kj} - \eta (y(x_n; w) - t_k_n) \phi_j(x_n) \]
- We can use this to derive a sequential estimation algorithm.
 - However, this will be quite slow...

Newton-Raphson for Least-Squares Estimation

- Let’s first apply Newton-Raphson to the least-squares error function:
 \[E(w) = \frac{1}{2} \sum_{n=1}^{N} (w^T \phi_n - t_n)^2 \]
 \[\nabla E(w) = \sum_{n=1}^{N} (w^T \phi_n - t_n) \phi_n - \Phi^T \Phi w - \Phi^T t \]
 \[H = \nabla^2 E(w) = \sum_{n=1}^{N} \phi_n \phi_n^T = \Phi^T \Phi \quad \text{where} \quad \Phi = \begin{bmatrix} \phi_1^T \\ \vdots \\ \phi_N^T \end{bmatrix} \]
- Resulting update scheme:
 \[w^{(r+1)} = w^{(r)} - (\Phi^T \Phi)^{-1} \Phi^T \left(\Phi w^{(r)} - \Phi^T \tau \right) \]
 \[= (\Phi^T \Phi)^{-1} \Phi^T \tau \quad \text{Closed-form solution!} \]

Iteratively Reweighted Least Squares

- Update equations
 \[w^{(r+1)} = w^{(r)} - (\Phi^T \Phi)^{-1} \Phi^T (y - t) \]
 \[= (\Phi^T \Phi)^{-1} \left(\Phi^T \Phi w^{(r)} - \Phi^T y - t \right) \]
 \[= (\Phi^T \Phi)^{-1} \Phi^T R \Phi w^{(r)} \]
 with \(z = \Phi w^{(r)} - R^{-1}(y - t) \)
- Again very similar form (normal equations)
 - But now with non-constant weighing matrix \(R \) (depends on \(w \)).
 - Need to apply normal equations iteratively.
 - Naturally Reweighted Least-Squares (IRLS)

Newton-Raphson for Logistic Regression

- Now, let’s try Newton-Raphson on the cross-entropy error function:
 \[E(w) = -\sum_{n=1}^{N} \left(t_n \ln y_n + (1 - t_n) \ln (1 - y_n) \right) \]
 \[\nabla E(w) = \sum_{n=1}^{N} (y_n - t_n) \phi_n = \Phi^T (y - t) \]
 \[H = \nabla^2 E(w) = \sum_{n=1}^{N} y_n(1 - y_n) \phi_n \phi_n^T = \Phi^T R \Phi \]
 \[\text{where} \quad R \text{ is an } N \times N \text{ diagonal matrix with } R_{nn} = y_n(1 - y_n). \]
 - The Hessian is no longer constant, but depends on \(w \) through the weighting matrix \(R \).

Summary: Logistic Regression

- Properties
 - Directly represent posterior distribution \(p(\phi | C) \).
 - Requires fewer parameters than modeling the likelihood + prior.
 - Very often used in statistics.
 - It can be shown that the cross-entropy error function is concave.
 - Optimization leads to unique minimum
 - But no closed-form solution exists
 - Iterative optimization (IRLS)
 - Both online and batch optimizations exist
 - There is a multi-class version described in (Bishop Ch.4.3.4).

- Caveat
 - Logistic regression tends to systematically overestimate odds ratios when the sample size is less than ~500.
Topics of This Lecture

- Fisher's linear discriminant (FLD)
 - Classification as dimensionality reduction
 - Linear discriminant analysis
 - Multiple discriminant analysis
 - Applications
- Logistic Regression
 - Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
 - Gradient descent
 - Iteratively Reweighted Least Squares
- Note on Error Functions

Note on Error Functions

- We have now seen already a number of error functions
 - Ideal misclassification error
 - Quadratic error
 - Cross-entropy error

Error Functions

- Ideal Misclassification Error
 - This is what we would like to optimize.
 - But cannot compute gradients here.

- Quadratic Error
 - Easy to optimize, closed-form solutions exist.
 - But not robust to outliers.

- Cross-Entropy Error
 - Minimizer of this error is given by posterior class probabilities.
 - Concave error function, unique minimum exists.
 - But no closed-form solution, requires iterative estimation.

References and Further Reading

- More information on Linear Discriminant Functions can be found in Chapter 4 of Bishop’s book (in particular Chapter 4.1 - 4.3).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006