Recap: Classification as Dim. Reduction

- Classification as dimensionality reduction
 - Interpret linear classification as a projection onto a lower-dim. space.
 - $y = w^T x$

- Learning problem: Try to find the projection vector w that maximizes class separation.

Recap: Fisher’s Linear Discriminant Analysis

- Maximize distance between classes
- Minimize distance within a class
- Criterion: $J(w) = \frac{w^T S_B w}{w^T S_W w}$
 - S_B = between-class scatter matrix
 - S_W = within-class scatter matrix
- The optimal solution for w can be obtained as:
 $$w \propto S_B^{-1}(m_2 - m_1)$$
- Classification function:
 $$y(x) = w^T x + w_0 \geq 0$$

Recap: Probabilistic Discriminative Models

- Consider models of the form
 $$p(C_i|\phi) = y(\phi) = \sigma(w^T \phi)$$
 with
 $$p(C_2|\phi) = 1 - p(C_1|\phi)$$
- This model is called logistic regression.
- Properties
 - Probabilistic interpretation
 - But discriminative method: only focus on decision hyperplane
 - Advantageous for high-dimensional spaces, requires less parameters than explicitly modeling $p(\phi|C_i)$ and $p(C_i)$.

Recap: Logistic Regression

- Let’s consider a data set $\{\phi_n, t_n\}$ with $n = 1, \ldots, N$, where $\phi_n = \phi(x_n)$ and $t_n \in \{0, 1\}$, $t = (t_1, \ldots, t_N)^T$.
- With $y_n = p(C_t|\phi_n)$, we can write the likelihood as
 $$p(t|w) = \prod_{n=1}^{N} y_n^{t_n} (1 - y_n)^{1-t_n}$$
- Define the error function as the negative log-likelihood
 $$E(w) = -\ln p(t|w)$$
 $$= -\sum_{n=1}^{N} \left(t_n \ln y_n + (1 - t_n) \ln(1 - y_n) \right)$$
- This is the so-called cross-entropy error function.
Recap: Iterative Methods for Estimation

- Gradient Descent (1st order)
 \[w^{(r+1)} = w^{(r)} - \eta \nabla E(w)|_{w^{(r)}} \]
 - Simple and general
 - Relatively slow to converge, has problems with some functions

- Newton-Raphson (2nd order)
 \[w^{(r+1)} = w^{(r)} - \eta \nabla^2 E(w)|_{w^{(r)}} \]
 where \(\nabla^2 E(w) \) is the Hessian matrix, i.e. the matrix of second derivatives.
 - Local quadratic approximation to the target function
 - Faster convergence

Recap: Iteratively Reweighted Least-Squares (IRLS)

- Update equations
 \[
 w^{(r+1)} = w^{(r)} - (\Phi^T R \Phi)^{-1} \Phi^T (y - t) \\
 \quad = (\Phi^T R \Phi)^{-1} \left\{ \Phi^T \Phi w^{(r)} - \Phi^T (y - t) \right\} \\
 \quad = (\Phi^T R \Phi)^{-1} \Phi^T R z \\
 \text{with } z = \Phi w^{(r)} - R^{-1} (y - t)
 \]
- Very similar form to pseudo-inverse (normal equations)
 - But now with non-constant weighing matrix \(R \) (depends on \(w \)).
 - Need to apply normal equations iteratively.
 \(\Rightarrow \text{Iteratively Reweighted Least-Squares (IRLS)} \)

Topics of This Lecture

- Statistical Learning Theory
 - Generalization and overfitting
 - Empirical and actual risk
 - VC dimension
 - Structural Risk Minimization
- Linear Support Vector Machines (SVMs)
 - Linearly separable case
 - Lagrange multipliers
 - Lagrangian (primal) formulation
 - Dual formulation
 - Discussion

Generalization and Overfitting

- Goal: predict class labels of new observations
 - Train classification model on limited training set.
 - The further we optimize the model parameters, the more the training error will decrease.
 - However, at some point the test error will go up again.
 - Overfitting to the training set!

Example: Linearly Separable Data

- Overfitting is often a problem with linearly separable data
 - Which of the many possible decision boundaries is correct?
 - All of them have zero error on the training set.
 - However, they will most likely result in different predictions on novel test data.
 - Different generalization performance

- How to select the classifier with the best generalization performance?

Cross-Validation

- Popular technique: Cross-Validation
 - Split the available data into training and validation sets.
 - Estimate the generalization error based on the error on the validation set.
 - Choose the model with minimal validation error.

- E.g. 5-fold cross-validation
 - Split
 - Repeat for all splits...
Statistical Learning Theory

- **Goal:** generalization ability
 - Choose the model that has the lowest probability of misclassification on all data, not just the training data.
- **Statistical learning theory**
 - Formal treatment of the question
 - "How can we control the generalization capability of a learning machine?"
 - Emphasis on theory in contrast to often-used heuristics.

Risk

- **Measuring the "optimality"**
 - Measure the optimality by the risk
 - Difficulty: how should the risk be estimated?
- **Practical way**
 - **Empirical risk** (measured on the training/validation set)
 \[R_{\text{emp}}(\alpha) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i; \alpha)) \]
 - Example: quadratic loss function
 \[R_{\text{emp}}(\alpha) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i; \alpha))^2 \]

Summary: Risk

- **Actual risk**
 - Advantage: measure for the generalization ability
 - Disadvantage: in general, we don’t know \(P_{X,Y}(x, y) \)
- **Empirical risk**
 - Disadvantage: no direct measure of the generalization ability
 - Advantage: does not depend on \(P_{X,Y}(x, y) \)
 - We typically know learning algorithms which minimize the empirical risk.
 - Strong interest in connection between both types of risk.
Empirical Risk Minimization Principle

- Enforce conditions on learning machine
 - Necessary and sufficient condition: uniform convergence
 \[p \left(\sup_{\alpha} \left| R(\alpha) - R_{\text{emp}}(\alpha) \right| > \epsilon \right) \rightarrow 0 \text{ as } N \rightarrow \infty \]
 - Compute the empirical risk
 - Based on training data \(\{(x_i, y_i)\}_{i=1}^N \)
 \[R_{\text{emp}}(\alpha) = \frac{1}{N} \sum_{i=1}^N L(y_i, f(x_i; \alpha)) \]
 - Minimizing the empirical risk guarantees that we minimize the actual risk in the limit of \(N \rightarrow \infty \).

Statistical Learning Theory

- Idea
 - Compute an upper bound on the actual risk based on the empirical risk
 \[R(\alpha) \leq R_{\text{emp}}(\alpha) + \epsilon(N, p^*, h) \]
 - Where
 \(N \): number of training examples
 \(p^* \): probability that the bound is correct
 \(h \): capacity of the learning machine ("VC-dimension")
- Side note:
 - (This idea of specifying a bound that only holds with a certain probability is explored in a branch of learning theory called "Probably Approximately Correct" or PAC Learning).

VC Dimension

- Interpretation as a two-player game
 - Opponent's turn: He says a number \(N \).
 - Our turn: We specify a set of \(N \) points \(\{x_1, \ldots, x_N\} \).
 - Opponent's turn: He gives us a labeling \(\{x_1, \ldots, x_N\} \in \{0,1\}^N \)
 - Our turn: We specify a function \(f(\alpha) \) which correctly classifies all \(N \) points.
 - If we can do that for all \(2^N \) possible labelings, then the VC dimension is at least \(N \).
VC Dimension

- Intuitive feeling (unfortunately wrong)
 - The VC dimension has a direct connection with the number of parameters.
- Counterexample
 \[f(x; \alpha) = g(\sin(\alpha x)) \]
 \[g(x) = \begin{cases}
 1, & x > 0 \\
 -1, & x \leq 0
 \end{cases} \]
 - Just a single parameter \(\alpha \).
 - Infinite VC dimension
 - Proof: Choose \(x_i = 10^{-i}, \ i = 1, \ldots, \ell \)
 \[\alpha = \pi \left(1 + \sum_{i=1}^{\ell} (1-y_i)10^i \right) \]

Upper Bound on the Risk

- Important result (Vapnik 1979, 1995)
 - With probability \(1-\eta \), the following bound holds
 \[R(\alpha) \leq R_{emp}(\alpha) + \sqrt{\frac{h(\log(2N/h) + 1) - \log(\eta/4)}{N}} \]
 "VC confidence"
 - This bound is independent of \(P_{X,Y}(x,y)! \)
 - Typically, we cannot compute the left-hand side (the actual risk)
 - If we know \(h \) (the VC dimension), we can however easily compute the risk bound
 \[R(\alpha) \leq R_{emp}(\alpha) + \epsilon(N,p^*, h) \]

Structural Risk Minimization

- Principle
 - Given a series of \(n \) models \(f_i(x; \alpha) \) with increasing VC dimension.
 - For each of the models: minimize empirical risk \(r_i \leq r_0 \leq \ldots \leq r_n \).
 - Choose the model that minimizes the upper bound (right-hand side of the equation).
 - This is in general not the model that minimizes the empirical risk.
- Remarks
 - This algorithm is formally justified.
 - The result is useful whenever the bound is indeed "tight".

Structural Risk Minimization

- How can we implement Structural Risk Minimization?
 \[R(\alpha) \leq R_{emp}(\alpha) + \epsilon(N,p^*, h) \]
- Classic approach
 - Keep \(\epsilon(N,p^*, h) \) constant and minimize \(R_{emp}(\alpha) \).
 - \(\epsilon(N,p^*, h) \) can be kept constant by controlling the model parameters.
- Support Vector Machines (SVMs)
 - Keep \(R_{emp}(\alpha) \) constant and minimize \(\epsilon(N,p^*, h) \).
 - In fact: \(R_{emp}(\alpha) = 0 \) for separable data.
 - Control \(\epsilon(N,p^*, h) \) by adapting the VC dimension (controlling the “capacity” of the classifier).

Revisiting Our Previous Example...

- How to select the classifier with the best generalization performance?
 - Intuitively, we would like to select the classifier which leaves maximal "safety room" for future data points.
 - This can be obtained by maximizing the margin between positive and negative data points.
 - It can be shown that the larger the margin, the lower the corresponding classifier’s VC dimension.
- The SVM takes up this idea
 - It searches for the classifier with maximum margin.
 - Formulation as a convex optimization problem
 - Possible to find the globally optimal solution!
Support Vector Machine (SVM)

• Let’s first consider linearly separable data
 - N training data points $\{ (x_i, y_i) \}_{i=1}^{N}$, $x_i \in \mathbb{R}^d$
 - Target values $t_i \in \{-1, 1\}$
 - Hyperplane separating the data

$$\sum_{i=1}^{N} t_i (w^T x_i + b) \geq 1 \quad \forall n$$

\Rightarrow Canonical representation of the decision hyperplane.

• Combined in one equation, this can be written as
 $$t_i (w^T x_i + b) \geq 1 \quad \forall n$$
 - The equation will hold exactly for the points on the margin
 - $t_i (w^T x_i + b) = 1$
 - By definition, there will always be at least one such point.

• Optimization problem
 - Find the hyperplane satisfying
 $$\arg \min_{w,b} \frac{1}{2} \|w\|^2$$
 under the constraints
 $$t_i (w^T x_i + b) \geq 1 \quad \forall n$$

\Rightarrow Quadratic programming problem with linear constraints.
 - Can be formulated using Lagrange multipliers.

• Who is already familiar with Lagrange multipliers?
 - Let’s look at a very current example...

Recap: Lagrange Multipliers

• Problem
 - We want to maximize $K(x)$ subject to constraints $f(x) = 0$.
 - Example: we want to get as close as possible, but there is a fence.
 - How should we move?
 - $f(x) = 0$
 - $f(x) > 0$
 - $f(x) < 0$
 - We want to maximize ∇f
 - But we can only move parallel to the fence, i.e., along
 $\nabla f + \lambda \nabla K + \lambda \nabla f$
 with $\lambda \neq 0$.

Recap: Lagrange Multipliers

- Problem
 - We want to maximize $K(x)$ subject to constraints $f(x) = 0$.
 - Example: we want to get as close as possible, but there is a fence.
 - How should we move?

$$f(x) = 0 \quad \Rightarrow \quad f(x) > 0$$

$$\Rightarrow \text{Optimize} \quad \max_{x, \lambda} L(x, \lambda) = K(x) + \lambda f(x)$$

Karush-Kuhn-Tucker (KKT) conditions: $\lambda \geq 0$

- Solution lies on boundary
 - $f(x) = 0$ for some $\lambda > 0$

- Solution lies inside $f(x) > 0$
 - $\lambda f(x) = 0$

In both cases

$\lambda f(x) = 0$

Example: There might be a hill from which we can see better…

In both cases

$\lambda f(x) = 0$

SVM - Lagrangian Formulation

- Lagrangian primal form
 $$L_p = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n (w^T x_n + b) - 1 \right\}$$

- The solution of L_p needs to fulfill the KKT conditions
 - Necessary and sufficient conditions

- KKT:

$$a_n \geq 0$$

$$\lambda \geq 0$$

$$t_n (y(x_n) - 1) \geq 0$$

$$f(x) \geq 0$$

$$a_n (t_n y(x_n) - 1) = 0$$

$$\lambda f(x) = 0$$

SVM - Solution (Part 1)

- Solution for the hyperplane
 - Computed as a linear combination of the training examples
 $$w = \sum_{n=1}^{N} a_n t_n x_n$$

- Because of the KKT conditions, the following must also hold
 $$a_n (t_n (w^T x_n + b) - 1) = 0$$

- This implies that $a_n > 0$ only for training data points for which
 $$(t_n (w^T x_n + b) - 1) = 0$$

Only some of the data points actually influence the decision boundary!

Recap: Lagrange Multipliers

- Problem
 - Now let’s look at constraints of the form $f(x) \geq 0$.
 - Example: There might be a hill from which we can see better…

- Optimize
 $$\max_{x, \lambda} L(x, \lambda) = K(x) + \lambda f(x)$$

- Two cases
 - Solution lies on boundary
 $$f(x) = 0$$
 - Solution lies inside $f(x) > 0$
 - Constraint inactive: $\lambda = 0$
 - In both cases
 $$\lambda f(x) = 0$$

SVM - Lagrangian Formulation

- Find hyperplane minimizing $\|w\|^2$ under the constraints
 $$t_n (w^T x_n + b) - 1 \geq 0 \quad \forall n$$

- Lagrangian formulation
 - Introduce positive Lagrange multipliers: $a_n \geq 0 \quad \forall n$
 - Minimize Lagrangian (“primal form”)
 $$L(w, b, a) = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n (w^T x_n + b) - 1 \right\}$$

- I.e., find w, b, and a such that
 $$\frac{\partial L}{\partial b} = 0 \quad \Rightarrow \quad \sum_{n=1}^{N} a_n t_n = 0$$
 $$\frac{\partial L}{\partial w} = 0 \quad \Rightarrow \quad w = \sum_{n=1}^{N} a_n t_n x_n$$
SVM - Support Vectors

- The training points for which \(a_n > 0 \) are called “support vectors”.
- Graphical interpretation:
 - The support vectors are the points on the margin.
 - They define the margin and thus the hyperplane.
 - Robustness to “too correct” points!

SVM - Solution (Part 2)

- Solution for the hyperplane
 - To define the decision boundary, we still need to know \(b \).
 - Observation: any support vector \(x_n \) satisfies
 \[
 t_n y(x_n) = t_n \left(\sum_{m \in S} a_m t_m x_m^T x_n + b \right) = 1 \]
 - KKT: \(f(x) \geq 0 \)
 - Using \(t_n^2 = 1 \), we can derive:
 \[
 b = t_n - \sum_{m \in S} a_m t_m x_m^T x_n
 \]
 - In practice, it is more robust to average over all support vectors:
 \[
 b = \frac{1}{|S|} \sum_{n \in S} \left(t_n - \sum_{m \in S} a_m t_m x_m^T x_n \right)
 \]

SVM - Dual Formulation

- Improving the scaling behavior: rewrite \(L_p \) in a dual form
 \[
 L_p = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n \left(t_n (w^T x_n + b) - 1 \right)
 \]
 \[
 = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n t_n w^T x_n - \sum_{n=1}^{N} a_n + \sum_{n=1}^{N} a_n
 \]
 - Using the constraint \(\sum_{n=1}^{N} a_n t_n = 0 \), we obtain
 \[
 \frac{\partial L_p}{\partial b} = 0
 \]

- Applying \(\frac{1}{2} \|w\|^2 = \frac{1}{2} w^T w \) and again using \(w = \sum_{n=1}^{N} a_n t_n x_n \)
 \[
 \frac{1}{2} w^T w = \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_n^T x_m)
 \]
 - Inserting this, we get the Wolfe dual
 \[
 L_d(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_n^T x_m)
 \]
Perceptual and Sensory Augmented Computing

References and Further Reading

for many learning algorithms

0

\[L_{\alpha}(\alpha) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_n^T x_m) \]

under the conditions

\[a_n \geq 0 \quad \forall n \]

\[\sum_{n=1}^{N} a_n t_n = 0 \]

The hyperplane is given by the \(N_s \) support vectors:

\[w = \sum_{n=1}^{N_s} a_n t_n x_n \]

Slide adapted from Bernt Schiele

Christopher M. Bishop

A Tutorial on Support Vector Machines for Pattern Recognition

Springer, 2006

USPS benchmark

2.5% error: human performance

Different learning algorithms

16.2% error: Decision tree (C4.5)

5.9% error: (best) 2-layer Neural Network

4.1% error: Gaussian kernel (\(\sigma = 0.3, 291 \) support vectors)

(We will see those in the next lecture...)

Next lecture...

Next Lecture...

So Far...

Only looked at linearly separable case...

- Current problem formulation has no solution if the data are not linearly separable!
- Need to introduce some tolerance to outlier data points.

Only looked at linear decision boundaries...

- This is not sufficient for many applications.
- Need to generalize the ideas to non-linear boundaries.

\[\Rightarrow \text{Next Lecture...} \]

References and Further Reading

More information on SVMs can be found in Chapter 7.1 of Bishop's book.

Additional information about Statistical Learning Theory and a more in-depth introduction to SVMs are available in the following tutorial:

Machine Learning, Summer'11