Recap: SVM for Non-Separable Data
- Slack variables
 - One slack variable \(\zeta_i \geq 0 \) for each training data point.
- Interpretation
 - \(\zeta_i = 0 \) for points that are on the correct side of the margin.
 - \(\zeta_i > 0 \) for all other points.
 - We do not have to set the slack variables ourselves! They are jointly optimized together with \(w \).

Recap: Nonlinear SVMs
- General idea: The original input space can be mapped to some higher-dimensional feature space where the training set is separable:

Recap: The Kernel Trick
- Important observation
 - \(\phi(x) \) only appears in the form of dot products \(\phi(x)^T \phi(y) \):
 \[
 y(x) = w^T \phi(x) + b = \sum_{n=1}^{N} a_n f_n \phi(x_n)^T \phi(x) + b
 \]
 - Define a so-called kernel function \(k(x,y) = \phi(x)^T \phi(y) \).
 - Now, in place of the dot product, use the kernel instead:
 \[
 y(x) = \sum_{n=1}^{N} a_n l_n k(x_n, x) + b
 \]
 - The kernel function implicitly maps the data to the higher-dimensional space (without having to compute \(\phi(x) \) explicitly)!
Example Application: Text Classification

- **Problem:**
 - Classify a document in a number of categories

- **Representation:**
 - "Bag-of-words" approach
 - Histogram of word counts (on learned dictionary)
 - Very high-dimensional feature space (~10,000 dimensions)
 - Few irrelevant features

- **This was one of the first applications of SVMs**
 - T. Joachims (1997)

Summary: SVMs

- **Properties**
 - Empirically, SVMs work very, very well.
 - SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.
 - SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, sequences, relational data) by designing kernel functions for such data.
 - SVM techniques have been applied to a variety of other tasks
 - e.g. SV Regression, One-class SVMs, ...
 - The kernel trick has been used for a wide variety of applications. It can be applied wherever dot products are in use
 - e.g. Kernel PCA, kernel FLD, ...
 - Good overview, software, and tutorials available on http://www.kernel-machines.org/

- **Limitations**
 - How to select the right kernel?
 - How to select the kernel parameters?
 - Usually, several parameters are optimized together in a grid search.
 - Solving the quadratic programming problem
 - Standard QP solvers do not perform too well on SVM task.
 - Dedicated methods have been developed for this, e.g. SMO.
 - Speed of evaluation
 - Evaluating $\langle x, y \rangle$ scales linearly in the number of SVs.
 - Too expensive if we have a large number of support vectors.
 - There are techniques to reduce the effective SV set.
 - Training for very large datasets (millions of data points)
 - Still problematic...

- **Evaluating** $\langle x, y \rangle$ $= \sum_{i=1}^{N} a_i a_j y_i y_j k(x_i, x_j)$

- **SVM Dual: Maximize**
 $L_d(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} a_i a_j y_i y_j k(x_i, x_j)$

 under the conditions
 $0 \leq a_i \leq C$
 $\sum_{i=1}^{N} a_i = 0$

 - **Classify new data points using**

 $y(x) = \sum_{i=1}^{N} a_i y_i k(x_i, x) + b$

Recap: Kernels Fulfilling Mercer’s Condition

- **Polynomial kernel**
 $k(x, y) = (x^T y + 1)^p$

- **Radial Basis Function kernel**
 $k(x, y) = \exp\left(-\frac{(x - y)^2}{2\sigma^2}\right)$
 e.g. Gaussian

- **Hyperbolic tangent kernel**
 $k(x, y) = \tanh(\kappa x^T y + \delta)$
 e.g. Sigmoid

(and many, many more...)
Example Application: Text Classification
- This is also how you could implement a simple spam filter...

Example Application: OCR
- Handwritten digit recognition
 - USPS benchmark
 - 2.5% error: human performance
 - Different learning algorithms
 - 16.2% error: Decision tree (C4.5)
 - 5.9% error: (best) 2-layer Neural Network
 - 5.1% error: LeNet 1 - (massively hand-tuned) 5-layer network
 - Different SVMs
 - 4.0% error: Polynomial kernel (p=3, 274 support vectors)
 - 4.1% error: Gaussian kernel ($\sigma=0.3$, 291 support vectors)

Example Application: Pedestrian Detection
- Sliding-window approach
 - E.g. histogram representation (HOG)
 - Map each grid cell in the input window to a histogram of gradient orientations.
 - Train a linear SVM using training set of pedestrian vs. non-pedestrian windows.

Example Application: Object Detection
- Example Application: Pedestrian Detection
 - N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005

Historical Importance
- USPS benchmark
 - 2.5% error: human performance
- Different learning algorithms
 - 16.2% error: Decision tree (C4.5)
 - 5.9% error: (best) 2-layer Neural Network
 - 5.1% error: LeNet 1 - (massively hand-tuned) 5-layer network
- Different SVMs
 - 4.0% error: Polynomial kernel ($p=3$, 274 support vectors)
 - 4.1% error: Gaussian kernel ($\sigma=0.3$, 291 support vectors)
Many Other Applications

- Lots of other applications in all fields of technology
 - OCR
 - Text classification
 - Computer vision
 - ...
 - High-energy physics
 - Monitoring of household appliances
 - Protein secondary structure prediction
 - Design on decision feedback equalizers (DFE) in telephony

(Detailed references in Schoelkopf & Smola, 2002, pp. 221)

You Can Try It At Home...

- Lots of SVM software available, e.g.
 - svmlight (http://svmlight.joachims.org/)
 - Command-line based interface
 - Source code available (in C)
 - Interfaces to Python, MATLAB, Perl, Java, DLL,...
 - libsvm (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
 - Library for inclusion with own code
 - C++ and Java sources
 - Interfaces to Python, R, MATLAB, Perl, Ruby, Weka, C#.NET,...

- Both include fast training and evaluation algorithms, support for multi-class SVMs, automated training and cross-validation, ...
 - Easy to apply to your own problems!

So Far...

- We’ve seen already a variety of different classifiers
 - k-NN
 - Bayes classifiers
 - Linear discriminants
 - SVMs

- Each of them has their strengths and weaknesses...
 - Can we improve performance by combining them?

Topics of This Lecture

- Ensembles of Classifiers
 - Constructing Ensembles
 - Cross-validation
 - Bagging
 - Combining Classifiers
 - Stacking
 - Bayesian model averaging
 - Boosting
 - AdaBoost
 - Intuition
 - Algorithm
 - Analysis
 - Extensions
 - Applications

Ensembles of Classifiers

- Intuition
 - Assume we have K classifiers.
 - They are independent (i.e. their errors are uncorrelated).
 - Each of them has an error probability $p < 0.5$ on training data.
 - Why can we assume that p won’t be larger than 0.5?
 - Then a simple majority vote of all classifiers should have a lower error than each individual classifier...

Example

- K classifiers with error probability $p = 0.3$.
- Probability that exactly L classifiers make an error:
 $$p^L(1 - p)^{K - L}$$

- The probability that 11 or more classifiers make an error is 0.026.
Topics of This Lecture

- Ensembles of Classifiers
 - Constructing Ensembles
 - Cross-validation
 - Bagging
 - Combining Classifiers
 - Stacking
 - Bayesian Model Averaging
 - Boosting
 - AdaBoost
 - Intuition
 - Algorithm
 - Analysis
 - Extensions
 - Applications

Methods for obtaining a set of classifiers

Methods for combining different classifiers

Constructing Ensembles

- How do we get different classifiers?
 - Simplest case: train same classifier on different data.
 - But... where shall we get this additional data from?
 - Recall: training data is very expensive!

- Idea: Subsample the training data
 - Reuse the same training algorithm several times on different subsets of the training data.

- Well-suited for “unstable” learning algorithms
 - Unstable: small differences in training data can produce very different classifiers
 - E.g. Decision trees, neural networks, rule learning algorithms,…
 - Stable learning algorithms
 - E.g. Nearest neighbor, linear regression, SVMs,…

Methods for obtaining a set of classifiers

Constructing Ensembles

- Cross-Validation
 - Split the available data into N disjunct subsets.
 - In each run, train on N-1 subsets for training a classifier.
 - Estimate the generalization error on the held-out validation set.

- E.g. 5-fold cross-validation

 | train | train | train | train | test |
 | train | train | train | test | train |
 | train | train | test | train | train |
 | train | test | train | train | train |
 | test | train | train | train | train |

Methods for combining different classifiers

Stacking

- Idea
 - Learn L classifiers (based on the training data)
 - Find a meta-classifier that takes as input the output of the L first-level classifiers.

- Example
 - Learn L classifiers with leave-one-out cross-validation.
 - Interpret the prediction of the L classifiers as L-dimensional feature vector.
 - Learn “level-2” classifier based on the examples generated this way.
Stacking

- Why can this be useful?
 - Simplicity
 - We may already have several existing classifiers available.
 - No need to retrain those, they can just be combined with the rest.
 - Correlation between classifiers
 - The combination classifier can learn the correlation.
 - Better results than simple Naïve Bayes combination.
 - Feature combination
 - E.g. combine information from different sensors or sources (vision, audio, acceleration, temperature, radar, etc.).
 - We can get good training data for each sensor individually, but data from all sensors together is rare.
 - Train each of the L classifiers on its own input data.
 - Only combination classifier needs to be trained on combined input.

Bayesian Model Averaging

- Model Averaging
 - Suppose we have \(H \) different models \(h = 1, \ldots, H \) with prior probabilities \(p(h) \).
 - Construct the marginal distribution over the data set
 \[
 p(X) = \sum_{h=1}^{H} p(X|h)p(h)
 \]
 - Interpretation
 - Just one model is responsible for generating the entire data set.
 - The probability distribution over \(h \) just reflects our uncertainty which model that is.
 - As the size of the data set increases, this uncertainty reduces, and \(p(X|h) \) becomes focused on just one of the models.

Model Averaging: Expected Error

- Combine \(M \) predictors \(y_m(x) \) for target output \(h(x) \).
 - E.g. each trained on a different bootstrap data set by bagging.
 - The committee prediction is given by
 \[
 y_{COM}(x) = \frac{1}{M} \sum_{m=1}^{M} y_m(x)
 \]
 - The output can be written as the true value plus some error.
 \[
 y(x) = h(x) + \epsilon(x)
 \]
 - Thus, the average sum-of-squares error takes the form
 \[
 \mathbb{E}_{\epsilon} = \left[\left\{ y_m(x) - h(x) \right\}^2 \right] = \mathbb{E}_{\epsilon} \left[\epsilon_m(x)^2 \right]
 \]

Recap: Model Combination

- E.g. Mixture of Gaussians
 - Several components are combined probabilistically.
 - Interpretation: different data points can be generated by different components.
 - We model the uncertainty which mixture component is responsible for generating the corresponding data point:
 \[
 p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k)
 \]
 - For iid data, we write the marginal probability of a data set \(X = \{x_1, \ldots, x_N\} \) in the form:
 \[
 p(X) = \prod_{n=1}^{N} p(x_n) = \prod_{n=1}^{N} \sum_{k=1}^{K} \pi_k \mathcal{N}(x_n|\mu_k, \Sigma_k)
 \]

Note the Different Interpretations!

- Model Combination
 - Different data points generated by different model components.
 - Uncertainty is about which component created which data point.
 - One latent variable \(z_n \) for each data point:
 \[
 p(X) = \prod_{n=1}^{N} p(x_n) = \prod_{n=1}^{N} \sum_{z_n} p(x_n, z_n)
 \]
 - Bayesian Model Averaging
 - The whole data set is generated by a single model.
 - Uncertainty is about which model was responsible.
 - One latent variable \(z \) for the entire data set:
 \[
 p(X) = \sum_{z} p(X, z)
 \]

Model Averaging: Expected Error

- Average error of individual models
 \[
 E_{AV} = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{\epsilon} \left[\epsilon_m(x)^2 \right]
 \]
- Average error of committee
 \[
 E_{COM} = \mathbb{E}_{\epsilon} \left[\frac{1}{M} \sum_{m=1}^{M} \epsilon_m(x)^2 \right] = \mathbb{E}_{\epsilon} \left[\frac{1}{M} \sum_{m=1}^{M} \epsilon_m(x)^2 \right]
 \]
- Assumptions
 - Errors have zero mean: \(\mathbb{E}_{\epsilon} \left[\epsilon_m(x) \right] = 0 \)
 - Errors are uncorrelated: \(\mathbb{E}_{\epsilon} \left[\epsilon_m(x)\epsilon_j(x) \right] = 0 \)
- Then:
 \[
 E_{COM} = \frac{1}{M} E_{AV}
 \]
Model Averaging: Expected Error

- Average error of committee
 \[E_{COM} = \frac{1}{3} E_{AV} \]
 - This suggests that the average error of a model can be reduced by a factor of 3 simply by averaging 3 versions of the model!
 - Spectacular indeed...
 - This sounds almost too good to be true...
- And it is... Can you see where the problem is?
 - Unfortunately, this result depends on the assumption that the errors are all uncorrelated.
 - In practice, they will typically be highly correlated.
 - Still, it can be shown that
 \[E_{COM} \leq E_{AV} \]

Boosting (Schapire 1989)

- Algorithm: (3-component classifier)
 1. Sample \(N_1 < N \) training examples (without replacement) from training set \(D \) to get set \(D_1 \).
 2. Sample \(N_2 < N \) training examples (without replacement), half of which were misclassified by \(C_1 \) to get set \(D_2 \).
 - Train weak classifier \(C_1 \) on \(D_2 \).
 3. Choose all data in \(D \) on which \(C_1 \) and \(C_2 \) disagree to get set \(D_3 \).
 - Train weak classifier \(C_1 \) on \(D_3 \).
 4. Get the final classifier output by majority voting of \(C_1 \), \(C_2 \), and \(C_3 \).

Boosting

- Simple technique with very interesting properties
 - Combination of multiple classifiers with the goal to improve classification accuracy.
 - Can be used with many different types of classifiers.
 - None of them needs to be too good on its own.
 - In fact, they only have to be slightly better than chance.
 - Extreme case: Decision stumps
 \[y(x) = \begin{cases} 1, & x_i \geq \theta \\ 0, & \text{else} \end{cases} \]
- Main idea
 - Train successive component classifiers on a subset of the training data that is most informative given the current set of classifiers.
 - **Sequential classifier selection**

Discussion: Ensembles of Classifiers

- Set of simple methods for improving classification
 - Often effective in practice.
- Apparent contradiction
 - We have stressed before that a classifier should be trained on samples from the distribution on which it will be tested.
 - Resampling seems to violate this recommendation.
 - Why can a classifier trained on a weighted data distribution do better than one trained on the i.i.d. sample?
- Explanation
 - We do not attempt to model the full category distribution here.
 - Instead, try to find the decision boundary more directly.
 - Also, increasing number of component classifiers broadens the class of implementable decision functions.

Applying Boosting

- How should we choose the number of samples \(N_i \)?
 - Ideally, the number of samples should be roughly equal in all component classifiers.
 - Reasonable first guess: \(N_i \approx N / 3 \)
 - However, if the problem is very simple
 - \(C_i \) will explain most of the data.
 - \(N_i \) and \(N_j \) will be very small.
 - Not all of the data will be used effectively.
 - Similarly, if the problem is extremely hard
 - \(C_i \) will explain only a small part of the data.
 - \(N_i \) may be unacceptably large.
 - In practice, may need to run the boosting procedure a few times and adjust \(N_i \) in order to use the full training set.
 - Also, we can recursively apply the procedure on \(C_i \) to \(C_j \).

Topics of This Lecture

- **Ensembles of Classifiers**
 - Construction Ensembles
 - Bagging
 - Combining Classifiers
 - Stacking
 - Bayesian model averaging
 - Boosting
 - AdaBoost
 - Intuition
 - Algorithm
 - Analysis
 - Extensions
 - Applications
AdaBoost - “Adaptive Boosting”

- **Main idea** [Freund & Schapire, 1996]
 - Instead of resampling, reweight misclassified training examples.
 - Increase the chance of being selected in a sampled training set.
 - Or increase the misclassification cost when training on the full set.

- **Components**
 - \(h_m(x) \): “weak” or base classifier
 - Condition: <50% training error over any distribution
 - \(D(x) \): “strong” or final classifier

- **AdaBoost**
 - Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers:
 \[
 H(x) = \text{sign} \left(\sum_{m=1}^{M} \alpha_m h_m(x) \right)
 \]

AdaBoost: Intuition

- Consider a 2D feature space with positive and negative examples.
- Each weak classifier splits the training examples with at least 50% accuracy.
- Examples misclassified by a previous weak learner are given more emphasis at future rounds.

AdaBoost - Formalization

- **2-class classification problem**
 - Given: training set \(X = \{x_1, \ldots, x_N\} \) with target values \(T = \{t_1, \ldots, t_N\}, t_i \in \{-1,1\} \).
 - Associated weights \(W = \{w_1, \ldots, w_N\} \) for each training point.

- **Basic steps**
 - In each iteration, AdaBoost trains a new weak classifier \(h_m(x) \) based on the current weighting coefficients \(W^{(m)} \).
 - We then adapt the weighting coefficients for each point
 - Increase \(w_i \) if \(x_i \) was misclassified by \(h_m(x) \).
 - Decrease \(w_i \) if \(x_i \) was classified correctly by \(h_m(x) \).
 - Make predictions using the final combined model
 \[
 H(x) = \text{sign} \left(\sum_{m=1}^{M} \alpha_m h_m(x) \right)
 \]

AdaBoost - Algorithm

1. **Initialization**: Set \(w_1^{(1)} = \frac{1}{N} \) for \(n = 1, \ldots, N \).
2. **For \(m = 1, \ldots, M \) ** iterations
 a) Train a new weak classifier \(h_m(x) \) using the current weighting coefficients \(W^{(m)} \) by minimizing the weighted error function
 \[
 J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(x) \neq t_n) \quad I(a) = \begin{cases} 1 & \text{if } a \text{ is true} \\ 0 & \text{otherwise} \end{cases}
 \]
 b) Estimate the weighted error of this classifier on \(X \):
 \[
 \epsilon_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(x) \neq t_n) \quad \text{such that} \quad \epsilon_m \leq 1/2
 \]
 c) Calculate a weighting coefficient for \(h_m(x) \):
 \[
 \alpha_m = \frac{1}{2} \log \left(\frac{1-\epsilon_m}{\epsilon_m} \right)
 \]
 d) Update the weighting coefficients:
 \[
 w_n^{(m+1)} = w_n^{(m)} \exp \left(-\alpha_m I(h_m(x) \neq t_n) \right)
 \]

How should we do this exactly?
AdaBoost - Historical Development

- Originally motivated by Statistical Learning Theory
 - AdaBoost was introduced in 1996 by Freund & Schapire.
 - It was empirically observed that AdaBoost often tends not to overfit. (Breiman 96, Cortes & Drucker 97, etc.)
 - As a result, the margin theory (Schapire et al. 98) developed, which is based on loose generalization bounds.
 - Note: margin for boosting is not the same as margin for SVM.
 - A bit like retrotitting the theory...
 - However, those bounds are too loose to be of practical value.
- Different explanation (Friedman, Hastie, Tibshirani, 2000)
 - Interpretation as sequential minimization of an exponential error function (“Forward Stagewise Additive Modeling”).
 - Explains why boosting works well.
 - Improvements possible by altering the error function.

AdaBoost - Minimizing Exponential Error

- Exponential error function
 \[E = \sum_{n=1}^{N} \exp \left(-t_n f_m(x_n) \right) \]
 - where \(f_m(x) \) is a classifier defined as a linear combination of base classifiers \(h_l(x) \):
 \[f_m(x) = \frac{1}{m} \sum_{l=1}^{m} \alpha_l h_l(x) \]
 - Goal
 - Minimize \(E \) with respect to both the weighting coefficients \(\alpha_l \) and the parameters of the base classifiers \(h_l(x) \).

- Sequential Minimization
 - Suppose that the base classifiers \(h_1(x), \ldots, h_m(x) \) and their coefficients \(\alpha_1, \ldots, \alpha_m \) are fixed.
 - Only minimize with respect to \(\alpha_n \) and \(h_n(x) \).
 \[
 E = \sum_{n=1}^{N} \exp \left(-t_n f_m(x_n) \right) \quad \text{with} \quad f_m(x) = \frac{1}{m} \sum_{l=1}^{m} \alpha_l h_l(x) \]
 \[= \sum_{n=1}^{N} \exp \left(-t_n f_m(x_n) - \frac{1}{m} \sum_{l=1}^{m} \alpha_l h_l(x_n) \right) \quad \Rightarrow \text{const.} \]
 \[= \sum_{n=1}^{N} w_n^{(m)} \exp \left(-\frac{1}{2} \sum_{l=1}^{m} \alpha_l h_l(x_n) \right) \]

- Rewriting the error
 \[
 E = \sum_{n=1}^{N} w_n^{(m)} \exp \left(-\frac{1}{2} \sum_{l=1}^{m} \alpha_l h_l(x_n) \right) \]
 \[
 = \exp \left(-\frac{1}{2} \sum_{m=1}^{M} \sum_{n=1}^{N} w_n^{(m)} h_m(x_n) \right) \]
 \[
 = \exp \left(-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{M} w_n^{(m)} \right) \]
 \[
 = \exp \left(-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{M} w_n^{(m)} I(h_m(x_n) \neq t_n) \right) \]
 \[
 = \exp \left(-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{M} w_n^{(m)} I(h_m(x_n) \neq t_n) \right) \]

- Minimize with respect to \(h_m(x) \):
 \[
 \frac{\partial E}{\partial h_m(x_n)} = 0 \]
 \[
 E = \left(e^{-\alpha_m/2} - e^{-\alpha_m/2} \right) \sum_{m=1}^{M} \sum_{n=1}^{N} w_n^{(m)} I(h_m(x_n) \neq t_n) + e^{-\alpha_m/2} \sum_{m=1}^{M} \sum_{n=1}^{N} w_n^{(m)} \]
 \[
 = \text{const.} \]
 \[
 \Rightarrow \text{This is equivalent to minimizing} \]
 \[
 J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(x_n) \neq t_m) \]
 \[
 \text{(our weighted error function from step 2a) of the algorithm} \]
 \[
 \Rightarrow \text{We're on the right track. Let's continue...} \]
AdaBoost - Minimizing Exponential Error

- Minimize with respect to α_n: $\frac{\partial E}{\partial \alpha_n} = 0$

 $$E = \left(e^{\alpha_n/2} - e^{-\alpha_n/2}\right) \sum_{n=1}^{N} w_n^{(m)} I(h_n(x_n) \neq t_n) + e^{-\alpha_n/2} \sum_{n=1}^{N} w_n^{(m)}$$

weighted error $\epsilon_n = \frac{\sum_{n=1}^{N} w_n^{(m)} I(h_n(x_n) \neq t_n)}{\sum_{n=1}^{N} w_n^{(m)}}$

\Rightarrow Update for the α coefficients: $\alpha_n = \ln \left(\frac{1}{\epsilon_n}\right)$

AdaBoost - Final Algorithm

1. Initialization: Set $w_n^{(1)} = \frac{1}{N}$ for $n = 1,...,N$.
2. For $m = 1,...,M$ iterations
 a) Train a new weak classifier $h_m(x)$ using the current weighting coefficients $W^{(m)}$ by minimizing the weighted error function $J_m = \sum w_n^{(m)} I(h_m(x_n) \neq t_n)$
 b) Estimate the weighted error of this classifier on X: $\epsilon_m = \frac{\sum_{n=1}^{N} w_n^{(m)} I(h_m(x_n) \neq t_n)}{\sum_{n=1}^{N} w_n^{(m)}}$
 c) Calculate a weighting coefficient for $h_m(x)$: $\alpha_m = \ln \left(\frac{1}{\epsilon_m}\right)$
 d) Update the weighting coefficients: $w_n^{(m+1)} = w_n^{(m)} \exp \{\alpha_m I(h_m(x_n) \neq t_n)\}$

AdaBoost - Analysis

- Result of this derivation
 - We now know that AdaBoost minimizes an exponential error function in a sequential fashion.
 - This allows us to analyze AdaBoost’s behavior in more detail.
 - In particular, we can see how robust it is to outlier data points.

Comparing Error Functions

- Ideal misclassification error function (black)
 - This is what we want to approximate.
 - Unfortunately, it is not differentiable.
 - We cannot minimize it by gradient descent.

- "Hinge error" used in SVMs
 - Zero error for points outside the margin ($z>1$).
 - Linearly increasing error for misclassified points ($z<1$).
Comparing Error Functions

- Ideal misclassification error function
- "Hinge error" used in SVMs
- Exponential error function
 - Continuous approximation to ideal misclassification function.
 - Sequential minimization leads to simple AdaBoost scheme.
 - Disadvantage: exponential penalty for large negative values!
 ⇒ More robust to outliers or misclassified data points!

Exp N = -∑\{tn \ln y_n + (1 - t_n) \ln(1 - y_n)\}

Comparison error function

- Ideal misclassification error function
- "Hinge error" used in SVMs
- Exponential error function
- "Cross-entropy error" E = -∑\{tn \ln y_n + (1 - t_n) \ln(1 - y_n)\}
 - Similar to exponential error for z > 0.
 - Only grows linearly with large negative values of z.
 ⇒ Make AdaBoost more robust by switching ⇒ "GentleBoost"

Summary: AdaBoost

- Properties
 - Simple combination of multiple classifiers.
 - Easy to implement.
 - Can be used with many different types of classifiers.
 - In fact, they only have to be slightly better than chance.
 - Commonly used in many areas.
 - Empirically good generalization capabilities.

- Limitations
 - Original AdaBoost sensitive to misclassified training data points.
 - Because of exponential error function.
 - Improvement by GentleBoost
 - Single-class classifier
 - Multiclass extensions available

Topics of This Lecture

- Ensembles of Classifiers
- Constructing Ensembles
 - Cross-validation
 - Bagging
- Combining Classifiers
 - Stacking
 - Bayesian model averaging
 - Boosting
- AdaBoost
 - Intuition
 - Algorithm
 - Analysis
 - Extensions
- Applications

Example Application: Face Detection

- Frontal faces are a good example of a class where global appearance models + a sliding window detection approach fit well:
 - Regular 2D structure
 - Center of face almost shaped like a "patch"/window

- Now we'll take AdaBoost and see how the Viola-Jones face detector works

Feature extraction

- "Rectangular" filters

Value at (x,y) is sum of pixels above and to the left of (x,y)
Efficiently computable with integral image: any sum can be computed in constant time
Avoid scaling images ⇒ scale features directly for same cost
Large Library of Filters

- Considering all possible filter parameters: position, scale, and type: 180,000+ possible features associated with each 24 x 24 window.

Use AdaBoost both to select the informative features and to form the classifier.

AdaBoost for Feature+Classifier Selection

- Want to select the single rectangle feature and threshold that best separates positive (faces) and negative (non-faces) training examples, in terms of weighted error.

Resulting weak classifier:
\[h_i(x) = \begin{cases} +1 & \text{if } f_i(x) > 0, \\ -1 & \text{otherwise} \end{cases} \]

For next round, reweight the examples according to errors, choose another filter/threshold combo.

AdaBoost for Efficient Feature Selection

- Image features = weak classifiers
- For each round of boosting:
 - Evaluate each rectangle filter on each example
 - Sort examples by filter values
 - Select best threshold for each filter (min error)
 - Sorted list can be quickly scanned for the optimal threshold
 - Select best filter/threshold combination
 - Weight on this features is a simple function of error rate
 - Reweight examples

Viola-Jones Face Detector: Results

- Viola & Jones, CVPR 2001

B. Leibe
Machine Learning, Summer'11
References and Further Reading

- More information on Classifier Combination and Boosting can be found in Chapters 14.1-14.3 of Bishop’s book.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

- A more in-depth discussion of the statistical interpretation of AdaBoost is available in the following paper: