
- **Main idea** [Freund & Schapire, 1996]
 - Instead of resampling, reweight misclassified training examples.
 - Increase the chance of being selected in a sampled training set.
 - Or increase the misclassification cost when training on the full set.

- **Components**
 - \(h_m(x) \): “weak” or base classifier
 - Condition: <50% training error over any distribution
 - \(H(x) \): “strong” or final classifier

- **AdaBoost:**
 - Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers:
 \[
 H(x) = \text{sign} \left(\sum_{m=1}^{M} \alpha_m h_m(x) \right)
 \]
Recap: AdaBoost - Algorithm

1. Initialization: Set \(w_n^{(1)} = \frac{1}{N} \) for \(n = 1, \ldots, N \).
2. For \(m = 1, \ldots, M \) iterations
 a) Train a new weak classifier \(h_m(x) \) using the current weighting coefficients \(W^{(m)} \) by minimizing the weighted error function
 \[
 J_m = \sum_{i=1}^{N} w_{i}^{(m)} I(h_m(x_i) \neq t_i) \quad I(A) = \begin{cases} 1, & \text{if } A \text{ is true} \\ 0, & \text{else} \end{cases}
 \]
 b) Estimate the weighted error of this classifier on \(X \): \(\epsilon_m = \sum_{i=1}^{N} w_{i}^{(m)} I(h_m(x_i) \neq t_i) \sum_{i=1}^{N} w_{i}^{(m)} \)
 c) Calculate a weighting coefficient for \(h_m(x) \): \(\alpha_m = \ln \left(\frac{1 - \epsilon_m}{\epsilon_m} \right) \)
 d) Update the weighting coefficients:
 \[
 w_{i}^{(m+1)} = w_{i}^{(m)} \exp \left(-\alpha_m I(h_m(x_i) \neq t_i) \right)
 \]

Recap: Comparing Error Functions

- Ideal misclassification error function
- "Hinge error" used in SVMs
- Exponential error function
- Continuous approximation to ideal misclassification function.
- Disadvantage: exponential penalty for large negative values!
- Less robust to outliers or misclassified data points!

Decision Trees

- Very old technique
 - Origin in the 60s, might seem outdated.
 - Can be used for problems with nominal data
 - E.g. attributes color \(\in \{ \text{red, green, blue} \} \) or weather \(\in \{ \text{sunny, rainy} \} \).
 - Discrete values, no notion of similarity or even ordering.
 - Interpretable results
 - Learned trees can be written as sets of if-then rules.
 - Methods developed for handling missing feature values.
 - Successfully applied to broad range of tasks
 - E.g. Medical diagnosis
 - E.g. Credit risk assessment of loan applicants
 - Some interesting novel developments building on top of them...

Example:
- "Classify Saturday mornings according to whether they're suitable for playing tennis."
 - Sunny
 - Overcast
 - Rain
 - High/Medium/Low
 - Strong/Weak
 - Yes/No
Decision Trees

• Elements
 - Each node specifies a test for some attribute.
 - Each branch corresponds to a possible value of the attribute.

Training Decision Trees

• Finding the optimal decision tree is NP-hard...
• Common procedure: Greedy top-down growing
 - Start at the root node.
 - Progressively split the training data into smaller and smaller subsets.
 - In each step, pick the best attribute to split the data.
 - If the resulting subsets are pure (only one label) or if no further attribute can be found that splits them, terminate the tree.
 - Else, recursively apply the procedure to the subsets.

• CART framework
 - Classification And Regression Trees (Breiman et al. 1993)
 - Formalization of the different design choices.

CART - 1. Number of Splits

• Each multi-valued tree can be converted into an equivalent binary tree:

⇒ Only consider binary trees here...

CART - 2. Picking a Good Splitting Feature

• Goal
 - Want a tree that is as simple/small as possible (Occam’s razor).
 - But: Finding a minimal tree is an NP-hard optimization problem.

 • Greedy top-down search
 - Efficient, but not guaranteed to find the smallest tree.
 - Seek a property \(T \) at each node \(N \) that makes the data in the child nodes as pure as possible.
 - For formal reasons more convenient to define impurity \(i(N) \).
 - Several possible definitions explored.

CART Framework

• Six general questions
 - Binary or multi-valued problem?
 - I.e. how many splits should there be at each node?
 - Which property should be tested at a node?
 - I.e. how to select the query attribute?
 - When should a node be declared a leaf?
 - I.e. when to stop growing the tree?
 - How can a grown tree be simplified or pruned?
 - Goal: reduce overfitting.
 - How to deal with impure nodes?
 - I.e. when the data itself is ambiguous.
 - How should missing attributes be handled?
CART – Picking a Good Splitting Feature

- **Application**
 - Select the query that decreases impurity the most
 \[\Delta i(N) = i(N) - P_L i(N_L) - (1 - P_L) i(N_R) \]
 - Multiway generalization (gain ratio impurity): Maximize
 \[\Delta i(s) = \frac{1}{Z} \left(i(N) - \sum_{k=1}^{K} P_k i(N_k) \right) \]
 - where the normalization factor ensures that large \(K \) are not inherently favored:
 \[Z = - \sum_{k=1}^{K} P_k \log_2 P_k \]

- **Which impurity measure should we choose?**
 - Some problems with misclassification impurity.
 - Discontinuous derivative.
 - Problems when searching over continuous parameter space.
 - Sometimes misclassification impurity does not decrease when Gini impurity would.
 - Both entropy impurity and Gini impurity perform well.
 - No big difference in terms of classifier performance.
 - In practice, stopping criterion and pruning method are often more important.

- **For efficiency, splits are often based on a single feature**
 - "Monothetic decision trees"

- **Evaluating candidate splits**
 - Nominal attributes: exhaustive search over all possibilities.
 - Real-valued attributes: only need to consider changes in label.
 - Order all data points based on attribute \(x_j \).
 - Only need to test candidate splits where \(\text{label}(x_j) = \text{label}(x_{j+1}) \).
CART - 3. When to Stop Splitting

- Problem: Overfitting
 - Learning a tree that classifies the training data perfectly may not lead to the tree with the best generalization to unseen data.
 - Reasons
 - Noise or errors in the training data.
 - Poor decisions towards the leaves of the tree that are based on very little data.
- Typical behavior

![Accuracy vs Hypothesis Complexity](chart)

- on training data
- on test data

CART - Overfitting Prevention (Pruning)

- Two basic approaches for decision trees
 - Prepruning: Stop growing tree as some point during top-down construction when there is no longer sufficient data to make reliable decisions.
 - Postpruning: Grow the full tree, then remove subtrees that do not have sufficient evidence.
- Label leaf resulting from pruning with the majority class of the remaining data, or a class probability distribution.

\[C_N = \arg \max_k p(C_k|N) \]

CART - Stopping Criterion

- Determining which subtrees to prune:
 - Cross-validation: Reserve some training data as a hold-out set (validation set, tuning set) to evaluate utility of subtrees.
 - Statistical test: Determine if any observed regularity can be dismisses as likely due to random chance.
 - Determine the probability that the outcome of a candidate split could have been generated by a random split.
 - Chi-squared statistic (one degree of freedom)
 - \[\chi^2 = \sum_{i=1}^{N} \frac{(n_{i,left} - \hat{n}_{i,left})^2}{\hat{n}_{i,left}} \]
 - “expected number from random split”
 - Compare to critical value at certain confidence level (table lookup).
 - Minimum description length (MDL): Determine if the additional complexity of the hypothesis is less complex than just explicitly remembering any exceptions resulting from pruning.

CART - 4. (Post-)Pruning

- Stopped splitting often suffers from “horizon effect”
 - Decision for optimal split at node \(N \) is independent of decisions at descendent nodes.
 - Might stop splitting too early.
 - Stopped splitting biases learning algorithm towards trees in which the greatest impurity reduction is near the root node.
- Often better strategy
 - Grow tree fully (until leaf nodes have minimum impurity).
 - Then prune away subtrees whose elimination results only in a small increase in impurity.
- Benefits
 - Avoids the horizon effect.
 - Better use of training data (no hold-out set for cross-validation).

Decision Trees - Feature Choice

- Best results if proper features are used

![Decision Tree Examples](chart)

- Bad tree
- Good tree

- Best results if proper features are used
- Preprocessing to find important axes often pays off.
Decision Trees - Non-Uniform Cost

- Incorporating category priors
 - Often desired to incorporate different priors for the categories.
 - Solution: weight samples to correct for the prior frequencies.

- Incorporating non-uniform loss
 - Create loss matrix \(\lambda_{ij} \)
 - Loss can easily be incorporated into Gini impurity
 - \(i(N) = \sum_{ij} \lambda_{ij} p(C_i)p(C_j) \)

Historical Development

- C4.5 (Quinlan 1993)
 - Improved version with extended capabilities.
 - Ability to deal with real-valued variables.
 - Multway splits are used with nominal data.
 - Using gain ratio impurity based on entropy (information gain) criterion.
 - Heuristics for pruning based on statistical significance of splits.
 - Rule post-pruning

- Main difference to CART
 - Strategy for handling missing attributes.
 - When missing feature is queried, C4.5 follows all \(I \) possible answers.
 - Decision is made based on all \(I \) possible outcomes, weighted by decision probabilities at node \(N \).

Summary: Decision Trees

- Properties
 - Simple learning procedure, fast evaluation.
 - Can be applied to metric, nominal, or mixed data.
 - Often yield interpretable results.

Decision Trees - Computational Complexity

- Given
 - Data points \([x_1, ... , x_N]\)
 - Dimensionality \(D \)

- Complexity
 - Storage: \(O(N) \)
 - Test runtime: \(O(\log N) \)
 - Training runtime: \(O(DN^2 \log N) \)
 - Most expensive part.
 - Critical step: selecting the optimal splitting point.
 - Need to check \(D \) dimensions, for each need to sort \(N \) data points.
 - \(O(DN \log N) \)

Historical Development

- ID3 (Quinlan 1986)
 - One of the first widely used decision tree algorithms.
 - Intended to be used with nominal (unordered) variables
 - Real variables are first binned into discrete intervals.
 - General branching factor
 - Use gain ratio impurity based on entropy (information gain) criterion.
 - Algorithm
 - Select attribute \(a \) that best classifies examples, assign it to root.
 - For each possible value \(v_i \) of \(a \),
 - Add new tree branch corresponding to test \(a = v_i \).
 - If \(\text{example_list}(a) \) is empty, add leaf node with most common label in \(\text{example_list}(a) \).
 - Else, recursively call ID3 for the subtree with attributes \(A \setminus a \).

Summary: Decision Trees

- Limitations
 - Often produce noisy (bushy) or weak (stunted) classifiers.
 - Do not generalize too well.
 - Training data fragmentation:
 - As tree progresses, splits are selected based on less and less data.
 - Overtraining and undertraining:
 - Deep trees: fit the training data well, will not generalize well to new test data.
 - Shallow trees: not sufficiently refined.
 - Stability
 - Trees can be very sensitive to details of the training points.
 - If a single data point is only slightly shifted, a radically different tree may come out.
 - Result of discrete and greedy learning procedure.
 - Expensive learning step
 - Mostly due to costly selection of optimal split.
Topics of This Lecture

• Decision Trees
 • CART
 • Impurity measures
 • Stopping criteria
 • Pruning
 • Issues
 • Historical development: ID3, C4.5

• Random Forests
 • Basic idea
 • Bootstrap sampling
 • Randomized attribute selection
 • Applications

Random Forests (Breiman 2001)

• Ensemble method
 • Idea: Create ensemble of many (very simple) trees.

• Empirically very good results
 • Often as good as SVMs (and sometimes better)
 • Often as good as Boosting (and sometimes better)

• Standard decision trees: main effort on finding good split
 • Random Forests trees put very little effort in this.
 • CART algorithm with Gini coefficient, no pruning.
 • Each split is only made based on a random subset of the available attributes.
 • Trees are grown fully (important!).

• Main secret
 • Injecting the “right kind of randomness”.

Random Forests - Algorithmic Goals

• Create many trees (50 - 1,000)

• Inject randomness into trees such that
 • Each tree has maximal strength
 • i.e. a fairly good model on its own
 • Each tree has minimum correlation with the other trees.
 • i.e. the errors tend to cancel out.

• Ensemble of trees votes for final result
 • Simple majority vote for category.

 • Alternative (Friedman)
 Optimally reweight the trees via regularized regression (lasso).

Random Forests - Injecting Randomness (1)

• Bootstrap sampling process
 • Select a training set by choosing N times with replacement from all N available training examples.
 • On average, each tree is grown on only ~63% of the original training data.
 • Remaining 37% “out-of-bag” (OOB) data used for validation.
 • Provides ongoing assessment of model performance.
 • Allows fitting to small data sets without explicitly holding back any data for testing.

Random Forests - Injecting Randomness (2)

• Random attribute selection
 • For each node, randomly choose subset of T attributes on which the split is based (typically square root of number available).
 • Evaluate splits only on OOB data (out-of-bag estimate).
 • Very fast training procedure
 • Need to test few attributes.
 • Evaluate only on ~37% of the data.
 • Minimizes inter-tree dependence
 • Reduce correlation between different trees.

• Each tree is grown to maximal size and is left unpruned
 • Trees are deliberately overfit
 • Become some form of nearest-neighbor predictor.

Big Question

How can this ever possibly work???
A Graphical Interpretation

Different trees induce different partitions on the data.

By combining them, we obtain a finer subdivision of the feature space...

...which at the same time also better reflects the uncertainty due to the bootstrapped sampling.

Summary: Random Forests

- Properties
 - Very simple algorithm.
 - Resistant to overfitting - generalizes well to new data.
 - Very rapid training
 - Also often used for online learning.
 - Extensions available for clustering, distance learning, etc.

- Limitations
 - Memory consumption
 - Decision tree construction uses much more memory.
 - Well-suited for problems with little training data
 - Little performance gain when training data is really large.

You Can Try It At Home...

- Free implementations available
 - Original RF implementation by Breiman & Cutler
 - http://www.stat.berkeley.edu/users/breiman/RandomForests/
 - Code + documentation
 - In Fortran 77
 - But also newer version available in Fortran 90!
 - Fast Random Forest implementation for Java (Weka)
 - http://code.google.com/p/fast-random-forest/

Applications

- Computer Vision: fast keypoint detection
 - Detect keypoints: small patches in the image used for matching
 - Classify into one of ~200 categories (visual words)

- Extremely simple features
 - E.g. pixel value in a color channel (CIELab)
 - E.g. sum of two points in the patch
 - E.g. difference of two points in the patch
 - E.g. absolute difference of two points

- Create forest of randomized decision trees
 - Each leaf node contains probability distribution over 200 classes
 - Can be updated and re-normalized incrementally

Application: Fast Keypoint Detection

References and Further Reading

- More information on Decision Trees can be found in Chapters 8.2-8.4 of Duda & Hart.

- The original paper for Random Forests: