Machine Learning - Lecture 11

Deconstructing Decision Trees (Randomized Trees, Forests, and Ferns)

26.05.2011

Bastian Leibe
RWTH Aachen
http://www.mmp.rwth-aachen.de
leibe@umic.rwth-aachen.de

Recap: Decision Trees

- Example:
 - "Classify Saturday mornings according to whether they're suitable for playing tennis."

Recap: CART Framework

- Six general questions
 1. Binary or multi-valued problem?
 - I.e. how many splits should there be at each node?
 2. Which property should be tested at a node?
 - I.e. how to select the query attribute?
 3. When should a node be declared a leaf?
 - I.e. when to stop growing the tree?
 4. How can a grown tree be simplified or pruned?
 - Goal: reduce overfitting.
 5. How to deal with impure nodes?
 - I.e. when the data itself is ambiguous.
 6. How should missing attributes be handled?

Recap: Picking a Good Splitting Feature

- Goal
 - Select the query (=split) that decreases impurity the most
 \[\Delta i(N) = i(N) - P_L i(N_L) - (1 - P_L) i(N_R) \]

- Impurity measures
 - Entropy impurity (information gain):
 \[i(N) = - \sum_{j} p(C_j | N) \log_2 p(C_j | N) \]
 - Gini impurity:
 \[i(N) = \sum_{i \neq j} p(C_i | N)p(C_j | N) \]

Recap: Overfitting Prevention (Pruning)

- Two basic approaches for decision trees
 - Prepruning: Stop growing tree as some point during top-down construction when there is no longer sufficient data to make reliable decisions.
 - Cross-validation
 - Chi-square test
 - MDL
 - Postpruning: Grow the full tree, then remove subtrees that do not have sufficient evidence.
 - Merging nodes
 - Rule-based pruning

- In practice often preferable to apply post-pruning.
Recap: Computational Complexity

- **Given**
 - Data points \(\{x_1, \ldots, x_N\} \)
 - Dimensionality \(D \)

- **Complexity**
 - Storage: \(O(N) \)
 - Test runtime: \(O(\log N) \)
 - Training runtime: \(O(DN^2 \log N) \)
 - Most expensive part.
 - Critical step: selecting the optimal splitting point.
 - Need to check \(D \) dimensions, for each need to sort \(N \) data points.
 \(O(DN \log N) \)

Summary: Decision Trees

- **Limitations**
 - Often produce noisy (bushy) or weak (stunted) classifiers.
 - Do not generalize too well.
 - Training data fragmentation:
 - As tree progresses, splits are selected based on less and less data.
 - Overtraining and undertraining:
 - Deep trees: fit the training data well, will not generalize well to new test data.
 - Shallow trees: not sufficiently refined.
 - Stability:
 - Trees can be very sensitive to details of the training points.
 - If a single data point is only slightly shifted, a radically different tree may come out!
 - Result of discrete and greedy learning procedure.
 - Expensive learning step
 - Mostly due to costly selection of optimal split.

- **Properties**
 - Simple learning procedure, fast evaluation.
 - Can be applied to metric, nominal, or mixed data.
 - Often yield interpretable results.

Topics of This Lecture

- **Randomized Decision Trees**
 - Randomized attribute selection

- **Recap: Random Forests**
 - Bootstrap sampling
 - Ensemble of randomized trees
 - Posterior sum combination
 - Analysis

- **Extremely randomized trees**
 - Random attribute selection

- **Ferns**
 - Fern structure
 - Semi-Naïve Bayes combination
 - Applications

Randomized Decision Trees (Amit & Geman 1997)

- **Decision trees: main effort on finding good split**
 - Training runtime: \(O(DN^2 \log N) \)
 - This is what takes most effort in practice.
 - Especially cumbersome with many attributes (large \(D \)).

- **Idea: randomize attribute selection**
 - No longer look for globally optimal split.
 - Instead randomly use subset of \(K \) attributes on which to base the split.
 - Choose best splitting attribute e.g. by maximizing the information gain (= reducing entropy):
 \[
 \Delta E = \sum_{j=1}^{K} \sum_{i=1}^{N} p_{ij} \log_2(p_{ij})
 \]

- **Randomized splitting**
 - Faster training: \(O(KN^2 \log N) \) with \(K \ll D \).
 - Use very simple binary feature tests.
 - Typical choice
 - \(K = 10 \) for root node.
 - \(K = 100d \) for node at level \(d \).

- **Effect of random split**
 - Of course, the tree is no longer as powerful as a single classifier...
 - But we can compensate by building several trees.
Ensemble Combination

- Ensemble combination
 - Tree leaves \((i, \eta)\) store posterior probabilities of the target classes.
 - Combine the output of several trees by averaging their posteriors (Bayesian model combination)

\[
p(C|x) = \frac{1}{L} \sum_{l=1}^{L} p_l(\eta|x)
\]

Applications: Character Recognition

- Image patches ("Tags")
 - Randomly sampled 4x4 patches
 - Construct a randomized tree based on binary single-pixel tests
 - Each leaf node corresponds to a "patch class" and produces a tag

- Representation of digits ("Queries")
 - Specific spatial arrangements of tags
 - An image answers "yes" if any such structure is found anywhere
 - How do we know which spatial arrangements to look for?

Applications: Fast Keypoint Detection

- Computer Vision: fast keypoint detection
 - Detect keypoints: small patches in the image used for matching
 - Classify into one of ~200 categories (visual words)

- Extremely simple features
 - E.g. pixel value in a color channel (CIELab)
 - E.g. sum of two points in the patch
 - E.g. difference of two points in the patch
 - E.g. absolute difference of two points

- Create forest of randomized decision trees
 - Each leaf node contains probability distribution over 200 classes
 - Can be updated and re-normalized incrementally.

Applications: Character Recognition

- Computer Vision: Optical character recognition
 - Classify small (14x20) images of hand-written characters/digits into one of 10 or 26 classes.

- Simple binary features
 - Tests for individual binary pixel values.
 - Organized in randomized tree.

Applications: Fast Keypoint Detection

Topics of This Lecture

- Randomized Decision Trees
 - Randomized attribute selection
- Recap: Random Forests
 - Bootstrap sampling
 - Ensemble of randomized trees
 - Posterior sum combination
 - Analysis
- Extremely randomized trees
 - Random attribute selection
- Ferns
 - Fern structure
 - Semi-naïve Bayes combination
- Applications

Recap: Random Forests (Breiman 2001)

- General ensemble method
 - Idea: Create ensemble of many (very simple) trees.
- Empirically very good results
 - Often as good as SVMs (and sometimes better!)
 - Often as good as Boosting (and sometimes better!)
- Standard decision trees: main effort on finding good split
 - Random Forests trees put very little effort in this.
 - CART algorithm with Gini coefficient, no pruning.
 - Each split is only made based on a random subset of the available attributes.
 - Trees are grown fully (important!).
- Main secret
 - Injecting the “right kind of randomness”.

Random Forests - Algorithmic Goals

- Create many trees (50 - 1,000)
- Inject randomness into trees such that
 - Each tree has maximal strength
 - i.e. a fairly good model on its own
 - Each tree has minimum correlation with the other trees.
 - i.e. the errors tend to cancel out.
- Ensemble of trees votes for final result
 - Simple majority vote for category.
- Alternative (Friedman)
 - Optimally reweight the trees via regularized regression (lasso).

Random Forests - Injecting Randomness (1)

- Bootstrap sampling process
 - Select a training set by choosing \(N \) times with replacement from all \(N \) available training examples.
 - On average, each tree is grown on only \(63\% \) of the original training data.
 - Remaining 37% “out-of-bag” (OOB) data used for validation.
 - Provides ongoing assessment of model performance in the current tree.
 - Allows fitting to small data sets without explicitly holding back any data for testing.
 - Error estimate is unbiased and behaves as if we had an independent test sample of the same size as the training sample.

Random Forests - Injecting Randomness (2)

- Random attribute selection
 - For each node, randomly choose subset of \(K \) attributes on which the split is based (typically \(K = \sqrt{N_f} \)).
 - Faster training procedure
 - Need to test only few attributes.
 - Minimizes inter-tree dependence
 - Reduce correlation between different trees.
 - Each tree is grown to maximal size and is left unpruned
 - Trees are deliberately overfit
 - Become some form of nearest-neighbor predictor.

A Graphical Interpretation

Different trees induce different partitions on the data.
A Graphical Interpretation

Different trees induce different partitions on the data.

By combining them, we obtain a finer subdivision of the feature space...

...which at the same time also better reflects the uncertainty due to the bootstrapped sampling.

Summary: Random Forests

- **Properties**
 - Very simple algorithm.
 - Resistant to overfitting - generalizes well to new data.
 - Faster training
 - Extensions available for clustering, distance learning, etc.

- **Limitations**
 - Memory consumption
 - Decision tree construction uses much more memory.
 - Well-suited for problems with little training data
 - Little performance gain when training data is really large.

Topics of This Lecture

- Randomized Decision Trees
 - Random attribute selection
- Recap Random Forests
 - Bootstrap sampling
 - Ensemble of randomized trees
 - Posterior sum combination
 - Analysis
- Extremely randomized trees
 - Random attribute selection
- Ferns
 - Fern structure
 - Semi-naive Bayes combination
 - Applications

A Case Study in Deconstructivism...

- What we’ve done so far
 - Take the original decision tree idea.
 - Throw out all the complicated bits (pruning, etc.).
 - Learn on random subset of training data (bootstrapping/bagging).
 - Select splits based on random choice of candidate queries.
 - So as to maximize information gain.
 - Complexity: $O(KN^2\log N)$
 - Ensemble of weaker classifiers.
- How can we further simplify that?
 - Main effort still comes from selecting the optimal split (from reduced set of options)...
 - Simply choose a random query at each node.
 - Complexity: $O(N)$
 - *Extremely randomized decision trees*
Extremely Randomized Decision Trees

- Random queries at each node...
 - Tree gradually develops from a classifier to a flexible container structure.
 - Node queries define (randomly selected) structure.
 - Each leaf node stores posterior probabilities

- Learning
 - Patches are “dropped down” the trees.
 - Only pairwise pixel comparisons at each node.
 - Directly update posterior distributions at leaves
 - No need to store the original patches!

Performance Comparison

- Results
 - Almost equal performance for random tests when a sufficient number of trees is available (and much faster to train!).

From Trees to Ferns...

- Observation
 - If we select the node queries randomly anyway, what is the point of choosing different ones for each node?
 - Keep the same query for all nodes at a certain level.
 - This effectively enumerates all 2^M possible outcomes of the M tree queries.
 - Tree can be collapsed into a fern-like structure.

What Does This Mean?

- Interpretation of the decision tree
 - We model the class conditional probabilities of a large number of binary features (the node queries).

 - Notation
 - f_i: Binary feature
 - N_f: Total number of features in the model.
 - C_k: Target class
 - Given f_{i_1}, \ldots, f_{i_N}, we want to select class C_k such that $k = \text{arg max}_k p(C_k | f_{i_1}, \ldots, f_{i_N})$

 - Assuming a uniform prior over classes, this is the equal to $k = \text{arg max}_k p(f_{i_1}, \ldots, f_{i_N} | C_k)$

 - Main issue: How do we model the joint distribution?

Modeling the Joint Distribution

- Full Joint
 - Model all correlations between features
 $p(f_{i_1}, \ldots, f_{i_N} | C_k)$

 - Model with 2^{N_f} parameters, not feasible to learn.

- Naïve Bayes classifier
 - Assumption: all features are independent.
 $p(f_{i_1}, \ldots, f_{i_N} | C_k) = \prod_{i=1}^{N_f} p(f_i | C_k)$

 - Too simplistic, assumption does not really hold!
 - Naïve Bayes model ignores correlation between features.
Modeling the Joint Distribution

- **Decision tree**
 - Each path from the root to a leaf corresponds to a specific combination of feature outcomes, e.g.

 \[p_{|C_k}(f_{m1} = 1, f_{m2} = 0, \ldots, f_{md} = 1) \]

 Those path outcomes are independent, therefore

 \[p(f_1, \ldots, f_N | C_k) = \prod_{m=1}^{M} p_{|C_k}(f_m) \]

 But not all feature outcomes are represented here...

- **Ferns**
 - A fern \(F \) is defined as a set of \(S \) binary features \(\{ f_1, \ldots, f_S \} \).
 - \(M \): number of ferns, \(N_f = S \cdot M \).
 - This represents a compromise:
 - Model with \(M \cdot 2^S \) parameters ("Semi-Naïve").
 - Flexible solution that allows complexity/performance tuning.

\[p(f_1, \ldots, f_N | C_k) \approx \prod_{j=1}^{M} p(F_j | C_k) \]

Ferns - Training

The tests compare the intensities of two pixels around the keypoint:

\[f_i = \begin{cases}
1 & \text{if } I(x) \leq I(y) \\
0 & \text{otherwise}
\end{cases} \]

Invariant to lighting change by any raising function.

Posterior probabilities:

\[p(f_1, \ldots, f_N | \sigma = \alpha) \]
Performance Comparison

- Results
 - Ferns perform as well as randomized trees (but are much faster)
 - Naïve Bayes combination better than averaging posteriors.

Keypoint Recognition in 10 Lines of Code

```c
1: for(int i = 0; i < H; i++) P[i] = 0.;
2: for(int k = 0; k < M; k++) {
3:   int index = 0, * d = D + k * 2 * S;
4:   for(int j = 0; j < S; j++) {
5:     index <<= 1;
6:     if (*(K + d[0]) < *(K + d[1]))
7:       index++;
8:     d += 2;
}
9:   p = PF + k * shift2 + index * shift1;
10:  for(int i = 0; i < H; i++) P[i] += p[i];
}
```

Properties
- Very simple to implement;
- (Almost) no parameters to tune;
- Very fast.

Application: Keypoint Matching with Ferns

Application: Mobile Augmented Reality

Practical Issues - Selecting the Tests

- For a small number of classes
 - We can try several tests.
 - Retain the best one according to some criterion.
 - E.g. entropy, Gini
- When the number of classes is large
 - Any test does a decent job.

Summary

- We started from full decision trees...
 - Successively simplified the classifiers...
- …and ended up with very simple randomized versions
 - Ensemble methods: Combination of many simple classifiers
 - Good overall performance
 - Very fast to train and to evaluate
- Common limitations of Randomized Trees and Ferns?
 - Need large amounts of training data!
 - In order to fill the many probability distributions at the leaves.
 - Memory consumption!
 - Linear in the number of trees.
 - Exponential in the tree depth,
 - Linear in the number of classes (histogram at each leaf!)
References and Further Reading

- Very recent topics, not covered sufficiently well in books yet...

- The original papers for Randomized Trees

- The original paper for Random Forests:

- The papers for Ferns: