Machine Learning - Lecture 11

Deconstructing Decision Trees
(Randomized Trees, Forests, and Ferns)

26.05.2011

Bastian Leibe
RWTH Aachen
http://www.mmp.rwth-aachen.de
leibe@umic.rwth-aachen.de
Course Outline

- **Fundamentals (2 weeks)**
 - Bayes Decision Theory
 - Probability Density Estimation

- **Discriminative Approaches (5 weeks)**
 - Linear Discriminant Functions
 - Statistical Learning Theory & SVMs
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns

- **Generative Models (4 weeks)**
 - Bayesian Networks
 - Markov Random Fields
Recap: Decision Trees

• Example:
 ➢ “Classify Saturday mornings according to whether they’re suitable for playing tennis.”

B. Leibe

Recap: CART Framework

Six general questions

1. Binary or multi-valued problem?
 - I.e. how many splits should there be at each node?

2. Which property should be tested at a node?
 - I.e. how to select the query attribute?

3. When should a node be declared a leaf?
 - I.e. when to stop growing the tree?

4. How can a grown tree be simplified or pruned?
 - Goal: reduce overfitting.

5. How to deal with impure nodes?
 - I.e. when the data itself is ambiguous.

6. How should missing attributes be handled?
Recap: Picking a Good Splitting Feature

• Goal
 - Select the query (=split) that decreases impurity the most
 \[\Delta i(N) = i(N) - P_L i(N_L) - (1 - P_L) i(N_R) \]

• Impurity measures
 - Entropy impurity (information gain):
 \[i(N) = - \sum_j p(C_j|N) \log_2 p(C_j|N) \]
 - Gini impurity:
 \[i(N) = \sum_{i \neq j} p(C_i|N)p(C_j|N) = \frac{1}{2} \left[1 - \sum_j p^2(C_j|N) \right] \]
Recap: Overfitting Prevention (Pruning)

- Two basic approaches for decision trees
 - Prepruning: Stop growing tree as some point during top-down construction when there is no longer sufficient data to make reliable decisions.
 - Cross-validation
 - Chi-square test
 - MDL
 - Postpruning: Grow the full tree, then remove subtrees that do not have sufficient evidence.
 - Merging nodes
 - Rule-based pruning

- In practice often preferable to apply post-pruning.
Recap: Computational Complexity

- **Given**
 - Data points \(\{x_1, \ldots, x_N\} \)
 - Dimensionality \(D \)

- **Complexity**
 - Storage: \(O(N) \)
 - Test runtime: \(O(\log N) \)
 - Training runtime: \(O(DN^2 \log N) \)
 - Most expensive part.
 - Critical step: selecting the optimal splitting point.
 - Need to check \(D \) dimensions, for each need to sort \(N \) data points. \(O(DN \log N) \)
Summary: Decision Trees

• Properties
 - Simple learning procedure, fast evaluation.
 - Can be applied to metric, nominal, or mixed data.
 - Often yield interpretable results.
Summary: Decision Trees

• Limitations
 - Often produce noisy (bushy) or weak (stunted) classifiers.
 - Do not generalize too well.
 - Training data fragmentation:
 - As tree progresses, splits are selected based on less and less data.
 - Overtraining and undertraining:
 - Deep trees: fit the training data well, will not generalize well to new test data.
 - Shallow trees: not sufficiently refined.
 - Stability
 - Trees can be very sensitive to details of the training points.
 - If a single data point is only slightly shifted, a radically different tree may come out!
 => Result of discrete and greedy learning procedure.
 - Expensive learning step
 - Mostly due to costly selection of optimal split.
Topics of This Lecture

- **Randomized Decision Trees**
 - Randomized attribute selection

- **Recap: Random Forests**
 - Bootstrap sampling
 - Ensemble of randomized trees
 - Posterior sum combination
 - Analysis

- **Extremely randomized trees**
 - Random attribute selection

- **Ferns**
 - Fern structure
 - Semi-Naïve Bayes combination
 - Applications
Randomized Decision Trees (Amit & Geman 1997)

- Decision trees: main effort on finding good split
 - Training runtime: $O(DN^2 \log N)$
 - This is what takes most effort in practice.
 - Especially cumbersome with many attributes (large D).

- Idea: randomize attribute selection
 - No longer look for globally optimal split.
 - Instead randomly use subset of K attributes on which to base the split.
 - Choose best splitting attribute e.g. by maximizing the information gain ($\triangle E$, reducing entropy):

$$
\Delta E = \sum_{k=1}^{K} \frac{|S_k|}{|S|} \sum_{j=1}^{N} p_j \log_2(p_j)
$$

B. Leibe
Randomized Decision Trees

- Randomized splitting
 - Faster training: $O(KN^2 \log N)$ with $K \ll D$.
 - Use very simple binary feature tests.
 - Typical choice
 - $K = 10$ for root node.
 - $K = 100d$ for node at level d.

- Effect of random split
 - Of course, the tree is no longer as powerful as a single classifier...
 - But we can compensate by building several trees.
Ensemble Combination

- Ensemble combination
 - Tree leaves \((l, \eta)\) store posterior probabilities of the target classes.
 - Combine the output of several trees by averaging their posteriors (Bayesian model combination)

\[
p(C|\mathbf{x}) = \frac{1}{L} \sum_{l=1}^{L} p_{l,\eta}(C|\mathbf{x})
\]

B. Leibe
Applications: Character Recognition

- **Computer Vision: Optical character recognition**
 - Classify small (14x20) images of hand-written characters/digits into one of 10 or 26 classes.

- **Simple binary features**
 - Tests for individual binary pixel values.
 - Organized in randomized tree.

B. Leibe
Applications: Character Recognition

- **Image patches (“Tags”)**
 - Randomly sampled 4×4 patches
 - Construct a randomized tree based on binary single-pixel tests
 - Each leaf node corresponds to a “patch class” and produces a tag

- **Representation of digits (“Queries”)**
 - Specific spatial arrangements of tags
 - An image answers “yes” if any such structure is found anywhere
 - How do we know which spatial arrangements to look for?
Applications: Character Recognition

- **Answer:** Create a second-level decision tree!
 - Start with two tags connected by an arc
 - Search through extensions of confirmed queries (or rather through a subset of them, there are lots!)
 - Select query with best information gain
 - Recurse...

- **Classification**
 - Average estimated posterior distributions stored in the leaves.

![Decision Tree Diagram]

Slide adapted from Jan Hosang
Applications: Fast Keypoint Detection

- **Computer Vision: fast keypoint detection**
 - Detect keypoints: small patches in the image used for matching
 - Classify into one of ~200 categories (visual words)

- **Extremely simple features**
 - E.g. pixel value in a color channel (CIELab)
 - E.g. sum of two points in the patch
 - E.g. difference of two points in the patch
 - E.g. absolute difference of two points

- **Create forest of randomized decision trees**
 - Each leaf node contains probability distribution over 200 classes
 - Can be updated and re-normalized incrementally.
Application: Fast Keypoint Detection

Topics of This Lecture

- Randomized Decision Trees
 - Randomized attribute selection
- Recap: Random Forests
 - Bootstrap sampling
 - Ensemble of randomized trees
 - Posterior sum combination
 - Analysis
- Extremely randomized trees
 - Random attribute selection
- Ferns
 - Fern structure
 - Semi-Naïve Bayes combination
 - Applications
Recap: Random Forests (Breiman 2001)

- General ensemble method
 - Idea: Create ensemble of many (very simple) trees.

- Empirically very good results
 - Often as good as SVMs (and sometimes better)!
 - Often as good as Boosting (and sometimes better)!

- Standard decision trees: main effort on finding good split
 - Random Forests trees put very little effort in this.
 - CART algorithm with Gini coefficient, no pruning.
 - Each split is only made based on a random subset of the available attributes.
 - Trees are grown fully (important!).

- Main secret
 - Injecting the “right kind of randomness”.

B. Leibe
Random Forests - Algorithmic Goals

• Create many trees (50 - 1,000)

• Inject randomness into trees such that
 - Each tree has maximal strength
 - I.e. a fairly good model on its own
 - Each tree has minimum correlation with the other trees.
 - I.e. the errors tend to cancel out.

• Ensemble of trees votes for final result
 - Simple majority vote for category.

 - Alternative (Friedman)
 - Optimally reweight the trees via regularized regression (lasso).
Random Forests - Injecting Randomness (1)

- **Bootstrap sampling process**
 - Select a training set by choosing N times with replacement from all N available training examples.
 - On average, each tree is grown on only $\sim 63\%$ of the original training data.
 - Remaining 37% “out-of-bag” (OOB) data used for validation.
 - Provides ongoing assessment of model performance in the current tree.
 - Allows fitting to small data sets without explicitly holding back any data for testing.
 - Error estimate is unbiased and behaves as if we had an independent test sample of the same size as the training sample.
Random Forests - Injecting Randomness (2)

- **Random attribute selection**
 - For each node, randomly choose subset of K attributes on which the split is based (typically $K = \sqrt{N_f}$).
 - Faster training procedure
 - Need to test only few attributes.
 - Minimizes inter-tree dependence
 - Reduce correlation between different trees.

- **Each tree is grown to maximal size and is left unpruned**
 - Trees are deliberately overfit
 - Become some form of nearest-neighbor predictor.
A Graphical Interpretation

Different trees induce different partitions on the data.

Slide credit: Vincent Lepetit
A Graphical Interpretation

Different trees induce different partitions on the data.
Different trees induce different partitions on the data.

By combining them, we obtain a finer subdivision of the feature space...
A Graphical Interpretation

Different trees induce different partitions on the data.

By combining them, we obtain a finer subdivision of the feature space...

...which at the same time also better reflects the uncertainty due to the bootstrapped sampling.
Summary: Random Forests

• Properties
 - Very simple algorithm.
 - Resistant to overfitting - generalizes well to new data.
 - Faster training.
 - Extensions available for clustering, distance learning, etc.

• Limitations
 - Memory consumption
 - Decision tree construction uses much more memory.
 - Well-suited for problems with little training data
 - Little performance gain when training data is really large.
Topics of This Lecture

- Randomized Decision Trees
 - Randomized attribute selection
- Recap: Random Forests
 - Bootstrap sampling
 - Ensemble of randomized trees
 - Posterior sum combination
 - Analysis
- Extremely randomized trees
 - Random attribute selection
- Ferns
 - Fern structure
 - Semi-Naïve Bayes combination
 - Applications
A Case Study in Deconstructivism...

• What we’ve done so far
 - Take the original decision tree idea.
 - Throw out all the complicated bits (pruning, etc.).
 - Learn on random subset of training data (bootstrapping/bagging).
 - Select splits based on random choice of candidate queries.
 - So as to maximize information gain.
 - Complexity: \(O(KN^2 \log N) \)
 ⇒ Ensemble of weaker classifiers.

• How can we further simplify that?
 - Main effort still comes from selecting the optimal split (from reduced set of options)...
 - Simply choose a random query at each node.
 - Complexity: \(O(N) \)
 ⇒ Extremely randomized decision trees

B. Leibe
Extremely Randomized Decision Trees

- Random queries at each node...
 - Tree gradually develops from a classifier to a flexible container structure.
 - Node queries define (randomly selected) structure.
 - Each leaf node stores posterior probabilities

- Learning
 - Patches are “dropped down” the trees.
 - Only pairwise pixel comparisons at each node.
 - Directly update posterior distributions at leaves
 ⇒ Very fast procedure, only few pixel-wise comparisons
 ⇒ No need to store the original patches!
Performance Comparison

- Results
 - Almost equal performance for random tests when a sufficient number of trees is available (and much faster to train!).

Topics of This Lecture

- Randomized Decision Trees
 - Randomized attribute selection
- Recap: Random Forests
 - Bootstrap sampling
 - Ensemble of randomized trees
 - Posterior sum combination
 - Analysis
- Extremely randomized trees
 - Random attribute selection
- Ferns
 - Fern structure
 - Semi-Naïve Bayes combination
 - Applications
From Trees to Ferns...

- **Observation**
 - If we select the node queries randomly anyway, what is the point of choosing different ones for each node?
 - ⇒ Keep the same query for all nodes at a certain level.
 - ⇒ This effectively enumerates all 2^M possible outcomes of the M tree queries.
 - ⇒ Tree can be collapsed into a fern-like structure.

B. Leibe
What Does This Mean?

- Interpretation of the decision tree
 - We model the class conditional probabilities of a large number of binary features (the node queries).
 - Notation
 - f_i: Binary feature
 - N_f: Total number of features in the model.
 - C_k: Target class
 - Given f_1, \ldots, f_{N_f}, we want to select class C_k such that
 $$k = \arg \max_k p(C_k | f_1, \ldots, f_{N_f})$$
 - Assuming a uniform prior over classes, this is the equal to
 $$k = \arg \max_k p(f_1, \ldots, f_{N_f} | C_k)$$
 - Main issue: How do we model the joint distribution?
Modeling the Joint Distribution

• Full Joint
 - Model all correlations between features
 \[p(f_1, \ldots, f_{N_f} | C_k) \]
 \[\Rightarrow \text{Model with } 2^{N_f} \text{ parameters, not feasible to learn.} \]

• Naïve Bayes classifier
 - Assumption: all features are independent.
 \[p(f_1, \ldots, f_{N_f} | C_k) = \prod_{i=1}^{N_f} p(f_i | C_k) \]
 \[\Rightarrow \text{Too simplistic, assumption does not really hold!} \]
 \[\Rightarrow \text{Naïve Bayes model ignores correlation between features.} \]
Modeling the Joint Distribution

- Decision tree
 - Each path from the root to a leaf corresponds to a specific combination of feature outcomes, e.g.
 \[p_{\text{leaf}_m}(C_k) = p(f_{m1} = 1, f_{m2} = 0, \ldots, f_{md} = 1 | C_k) \]
 - Those path outcomes are independent, therefore
 \[p(f_1, \ldots, f_{N_f} | C_k) \approx \prod_{m=1}^{M} p_{\text{leaf}_m}(C_k) \]
 - But not all feature outcomes are represented here...
Modeling the Joint Distribution

- **Ferns**
 - A fern F is defined as a set of S binary features $\{f_l, \ldots, f_{l+S}\}$.
 - M: number of ferns, $N_f = S \cdot M$.
 - This represents a compromise:
 \[
 p(f_1, \ldots, f_{N_f} | C_k) \approx \prod_{j=1}^{M} p(F_j | C_k)
 \]
 \[
 = p(f_1, \ldots, f_S | C_k) \cdot p(f_{S+1}, \ldots, f_{2S} | C_k) \cdot \ldots
 \]
 - Full joint inside fern
 - Naïve Bayes between ferns

\Rightarrow Model with $M \cdot 2^S$ parameters ("Semi-Naïve").
\Rightarrow Flexible solution that allows complexity/performance tuning.
Modeling the Joint Distribution

• Ferns
 ➢ Ferns are thus semi-naïve Bayes classifiers.
 ➢ They assume independence between sets of features (between the ferns)...
 ➢ ...and enumerate all possible outcomes inside each set.

• Interpretation
 ➢ Combine the tests \(f_l, \ldots, f_{l+S} \) into a binary number.
 ➢ Update the “fern leaf” corresponding to that number.

\(f_0 \)	0
\(f_1 \)	0
\(f_2 \)	1

Update leaf \(100_2 = 4 \)
Ferns - Training

The tests compare the intensities of two pixels around the keypoint:

\[
 f_i = \begin{cases}
 1 & \text{if } I(m_{i,1}) \leq I(m_{i,2}) \\
 0 & \text{otherwise}
 \end{cases}
\]

Invariant to lighting change by any raising function.

Posterior probabilities:

\[
P(f_1, f_2, \cdots f_n \mid C = c_j)
\]
Ferns - Training
Ferns - Training

Slide credit: Vincent Lepetit

B. Leibe
Ferns - Training

Slide credit: Vincent Lepetit
Ferns - Training

Slide credit: Vincent Lepetit

B. Leibe
Ferns - Training

Slide credit: Vincent Lepetit

B. Leibe
Ferns - Training Results

Normalize:

\[\sum = 1 \]
Ferns - Training Results

\[
\sum = 1
\]
Ferns - Recognition

Slide credit: Vincent Lepetit

B. Leibe
Performance Comparison

- Results
 - Ferns perform as well as randomized trees (but are much faster)
 - Naïve Bayes combination better than averaging posteriors.

B. Leibe
Keypoint Recognition in 10 Lines of Code

1: for(int i = 0; i < H; i++) P[i] = 0.;
2: for(int k = 0; k < M; k++) {
3: int index = 0, * d = D + k * 2 * S;
4: for(int j = 0; j < S; j++) {
5: index <<= 1;
6: if (*(K + d[0]) < *(K + d[1]))
7: index++;
8: }
9: p = PF + k * shift2 + index * shift1;
10: for(int i = 0; i < H; i++) P[i] += p[i];
}

- Properties
 - Very simple to implement;
 - (Almost) no parameters to tune;
 - Very fast.

Application: Keypoint Matching with Ferns
Application: Mobile Augmented Reality

Mobile Phone Augmented Reality

at
30 Frames per Second using Natural Feature Tracking
(all processing and rendering done in software)

B. Leibe
Practical Issues - Selecting the Tests

• For a small number of classes
 - We can try several tests.
 - Retain the best one according to some criterion.
 - E.g. entropy, Gini

• When the number of classes is large
 - Any test does a decent job.
Summary

• We started from full decision trees...
 ➢ Successively simplified the classifiers...

• ...and ended up with very simple randomized versions
 ➢ Ensemble methods: Combination of many simple classifiers
 ➢ Good overall performance
 ➢ Very fast to train and to evaluate

• Common limitations of Randomized Trees and Ferns?
 ➢ Need large amounts of training data!
 - In order to fill the many probability distributions at the leaves.
 ➢ Memory consumption!
 - Linear in the number of trees.
 - Exponential in the tree depth.
 - Linear in the number of classes (histogram at each leaf!)
References and Further Reading

• Very recent topics, not covered sufficiently well in books yet...

• The original papers for Randomized Trees

• The original paper for Random Forests:

• The papers for Ferns:
 - D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, D. Schmalstieg, *Pose Tracking from Natural Features on Mobile Phones*. In *ISMAR 2008*.

B. Leibe