Exercise 1 due Monday next week
- Bayes decision theory
- Maximum Likelihood
- Kernel density estimation / k-NN
⇒ Submit your results to Georgios until evening of 25.04.

Exercise modalities
- You can work in teams of up to 3 people.
- If you work in a team
 - Turn in a single solution
 - But put all names on it

\[L(\mu) = p(X|\mu) = \prod_{n=1}^{N} p(x_n|\mu) \]
\[E(\theta) = -\ln L(\theta) = - \sum_{n=1}^{N} \ln p(x_n|\theta) \]
\[\frac{\partial}{\partial \theta} E(\theta) = - \sum_{n=1}^{N} \frac{p(x_n|\theta)}{p(x_n|\theta)} \frac{\partial p(x_n|\theta)}{\partial \theta} = 0 \]

Recap: Gaussian (or Normal) Distribution
- One-dimensional case
 - Mean \(\mu \)
 - Variance \(\sigma^2 \)

\[\mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{(x-\mu)^2}{2\sigma^2} \right\} \]

- Multi-dimensional case
 - Mean \(\mu \)
 - Covariance \(\Sigma \)

\[\mathcal{N}(x|\mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^D |\Sigma|}} \exp \left\{ -\frac{1}{2} (x-\mu)^T \Sigma^{-1} (x-\mu) \right\} \]
Recap: Bayesian Learning Approach

- **Discussion**
 - Likelihood of the parametric form θ given the data set X.
 - Estimate for x based on parametric form θ.
 - Prior for the parameters θ.
 - The more uncertain we are about θ, the more we average over all possible parameter values.

$$p(x|X) = \frac{\int p(x|\theta) L(\theta) p(\theta) d\theta}{\int L(\theta) p(\theta) d\theta}$$

Normalization: integrate over all possible values of θ

Topics of This Lecture

- **Probability Density Estimation**
 - General concepts
 - Gaussian distribution
- **Parametric Methods**
 - Maximum Likelihood approach
 - Bayesian vs. Frequentist views on probability
 - Bayesian Learning
- **Non-Parametric Methods**
 - Histograms
 - Kernel density estimation
 - k-Nearest Neighbors
 - k-NN for Classification
 - Bias-Variance tradeoff

Non-Parametric Methods

- **Non-parametric representations**
 - Often the functional form of the distribution is unknown

- **Estimate probability density from data**
 - Histograms
 - Kernel density estimation (Parzen window / Gaussian kernels)
 - k-Nearest-Neighbor

Histograms

- **Basic idea:**
 - Partition the data space into distinct bins with widths Δ, and count the number of observations, n_i, in each bin.

 $$\hat{p}_i = \frac{n_i}{N \Delta}$$

 - Often, the same width is used for all bins, $\Delta = \Delta_i$.
 - This can be done, in principle, for any dimensionality D...

 ![Histogram example image](image-source: C.M. Bishop, 2006)

Summary: Histograms

- **Properties**
 - Very general. In the limit ($N \to \infty$), every probability density can be represented.
 - No need to store the data points once histogram is computed.
 - Rather brute-force

- **Problems**
 - High-dimensional feature spaces
 - D-dimensional space with M^D bins/dimension will require M^D bins!
 - Requires an exponentially growing number of data points
 - "Curse of dimensionality"
 - Discontinuities at bin edges
 - Bin size?
 - Too large: too much smoothing
 - Too small: too much noise

![Histogram example image](image-source: C.M. Bishop, 2006)
Statistically Better-Founded Approach

- Data point x comes from pdf $p(x)$
 - Probability that x falls into small region R
 \[P = \int_R p(y)dy \]
- If R is sufficiently small, $p(x)$ is roughly constant
 - Let V be the volume of R
 \[P = \int_R p(y)dy \approx p(x)V \]
- If the number N of samples is sufficiently large, we can estimate P as
 \[P = \frac{K}{N} \Rightarrow p(x) \approx \frac{K}{NV} \]

Kernel Methods

- Parzen Window
 - Hypercube of dimension D with edge length h
 \[k(u) = \begin{cases}
 1, & \text{if } u_i \cdot \frac{1}{2} \leq i \leq \frac{1}{2} \text{ for all } i = 1, \ldots, D \\
 0, & \text{else}
 \end{cases} \]
 - "Kernel function"
 \[K = \sum_{n=1}^{N} k(\frac{x-x_n}{h}) \quad V = \int k(u)du = h^d \]
 - Probability density estimate:
 \[p(x) \approx \frac{K}{NV} = \frac{1}{Nh^D} \sum_{n=1}^{N} k(\frac{x-x_n}{h}) \]

Kernel Methods: Gaussian Kernel

- Gaussian kernel
 - Kernel function
 \[k(u) = \frac{1}{(2\pi h^2)^{D/2}} \exp \left\{- \frac{||u||^2}{2h^2} \right\} \]
 \[K = \sum_{n=1}^{N} k(x-x_n) \quad V = \int k(u)du = 1 \]
 - Probability density estimate
 \[p(x) \approx \frac{K}{NV} = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{(2\pi h^2)^{D/2}} \exp \left\{- \frac{||x-x_n||^2}{2h^2} \right\} \]

Gauss Kernel: Examples

- not smooth enough
- about OK
- too smooth

Image source: C.M. Bishop, 2006
Kernel Methods

- In general
 - Any kernel such that
 \[k(u) \geq 0, \quad \int k(u) \, du = 1 \]
 can be used. Then
 \[K = \sum_{n=1}^{N} k(x - x_n) \]
 - And we get the probability density estimate
 \[p(x) \approx \frac{K}{NV} = \frac{1}{NV} \sum_{n=1}^{N} k(x - x_n) \]

Statistically Better-Founded Approach

\[p(x) \approx \frac{K}{NV} \]

- K-Nearest Neighbor
 - Increase the volume \(V \) until the \(K \) next data points are found.

K-Nearest Neighbor

- Nearest-Neighbor density estimation
 - Fix \(K \), estimate \(V \) from the data.
 - Consider a hypersphere centred on \(x \) and let it grow to a volume \(V \) that includes \(K \) of the given \(N \) data points.
 - Then
 \[p(x) \approx \frac{K}{NV} \]
 - Side note
 - Strictly speaking, the model produced by K-NN is not a true density model, because the integral over all space diverges.
 - E.g. consider \(K = 1 \) and a sample exactly on a data point \(x = x_j \).

k-Nearest Neighbor: Examples

- Not smooth enough
- About OK
- Too smooth

K acts as a smoother.

Summary: Kernel and k-NN Density Estimation

- Properties
 - Very general. In the limit (\(N \to \infty \)), every probability density can be represented.
 - No computation involved in the training phase
 \(\Rightarrow \) Simply storage of the training set
- Problems
 - Requires storing and computing with the entire dataset.
 - Computational cost linear in the number of data points.
 - This can be improved, at the expense of some computation during training, by constructing efficient tree-based search structures.
 - Kernel size \(K \) in K-NN?
 - Too large: too much smoothing
 - Too small: too much noise

K-Nearest Neighbor Classification

- Bayesian Classification
 \[p(C_j|x) = \frac{p(x|C_j)p(C_j)}{p(x)} \]
- Here we have
 \[p(x) \approx \frac{K}{NV} \]
 \[p(x|C_j) \approx \frac{K_j}{N_jV} \]
 \[p(C_j) \approx \frac{N_j}{N} \]

k-Nearest Neighbor classification
Discussion

- The methods discussed so far are all simple and easy to apply. They are used in many practical applications.
- However...
 - Histograms scale poorly with increasing dimensionality.
 - Only suitable for relatively low-dimensional data.
 - Both k-NN and kernel density estimation require the entire data set to be stored.
 - Too expensive if the data set is large.
 - Simple parametric models are very restricted in what forms of distributions they can represent.
 - Only suitable if the data has the same general form.
- We need density models that are efficient and flexible!
 - Next topic...

Topics of This Lecture

- **Mixture distributions**
 - Mixture of Gaussians (MoG)
 - Maximum Likelihood estimation attempt
- **K-Means Clustering**
 - Algorithm
 - Applications
- **EM Algorithm**
 - Credit assignment problem
 - MoG estimation
 - EM Algorithm
 - Interpretation of K-Means
 - Technical advice
- **Applications**

Mixture Distributions

- A single parametric distribution is often not sufficient
 - E.g. for multimodal data

K-Nearest Neighbors for Classification

- Results on an example data set
- K acts as a smoothing parameter.
- Theoretical guarantee
 - For $N \to \infty$, the error rate of the 1-NN classifier is never more than twice the optimal error (obtained from the true conditional class distributions).

Bias-Variance Tradeoff

- Probability density estimation
 - Histograms: bin size?
 - Δ too large: too smooth
 - Δ too small: not smooth enough
 - Kernel methods: kernel size?
 - h too large: too smooth
 - h too small: not smooth enough
 - K-Nearest Neighbor: K?
 - K too large: too smooth
 - K too small: not smooth enough
- This is a general problem of many probability density estimation methods
 - Including parametric methods and mixture models

Topics of This Lecture

- Mixture distributions
 - Mixture of Gaussians (MoG)
 - Maximum Likelihood estimation attempt
- K-Means Clustering
 - Algorithm
 - Applications
- EM Algorithm
 - Credit assignment problem
 - MoG estimation
 - EM Algorithm
 - Interpretation of K-Means
 - Technical advice
- Applications

K-Nearest Neighbors for Classification

- K-Nearest Neighbors for Classification
 - Results on an example data set
 - K acts as a smoothing parameter.
 - Theoretical guarantee
 - For $N \to \infty$, the error rate of the 1-NN classifier is never more than twice the optimal error (obtained from the true conditional class distributions).
Mixture of Gaussians (MoG)

- Sum of M individual Normal distributions

\[f(x) = \sum_{j=1}^{M} p(x|\theta_j)p(j) \]

- In the limit, every smooth distribution can be approximated this way (if M is large enough)

\[p(x|\theta) = \sum_{j=1}^{M} p(x|\theta_j)p(j) \]

Notes:
- The mixture density integrates to 1: $\int p(x)dx = 1$
- The mixture parameters are
 \[\theta = (\pi_1, \mu_1, \sigma_1^2, \ldots, \pi_M, \mu_M, \sigma_M) \]
- Likelihood of measurement x given mixture component j
 \[p(x|\theta_j) = N(x|\mu_j, \sigma_j^2) = \frac{1}{\sqrt{2\pi\sigma_j}} \exp \left\{ -\frac{(x-\mu_j)^2}{2\sigma_j^2} \right\} \]
 \[p(j) = \pi_j \text{ with } 0 \cdot \pi_j \cdot 1 \text{ and } \sum_{j=1}^{M} \pi_j = 1. \]

Mixture of Multivariate Gaussians

- Multivariate Gaussians

\[p(x|\theta_j) = \frac{1}{(2\pi)^{D/2} |\Sigma_j|^{1/2}} \exp \left\{-\frac{1}{2} (x-\mu_j)^T \Sigma_j^{-1} (x-\mu_j) \right\} \]

- Mixture weights / mixture coefficients:

\[p(j) = \pi_j \text{ with } 0 \cdot \pi_j \cdot 1 \text{ and } \sum_{j=1}^{M} \pi_j = 1 \]

- Parameters:

\[\theta = (\pi_1, \mu_1, \Sigma_1, \ldots, \pi_M, \mu_M, \Sigma_M) \]
I.e. there is no direct analytical solution!

But...

I.e. there is no direct analytical solution!

Other strategy:

Assuming we knew the values of the hidden variable...

Assuming we knew the mixture components...

Bayes decision rule: Decide $j = 1$ if

$$p(j = 1|x_n) > p(j = 2|x_n)$$
Mixture of Gaussians - Other Strategy

- Chicken and egg problem - what comes first?

\[f(x) \]

We don’t know any of those!

- In order to break the loop, we need an estimate for \(j \).
 - E.g. by clustering...

Topics of This Lecture

- Mixture distributions
 - Mixture of Gaussians (MoG)
 - Maximum Likelihood estimation attempt
- K-Means Clustering
 - Algorithm
 - Applications
- EM Algorithm
 - Credit assignment problem
 - MoG estimation
 - EM Algorithm
 - Interpretation of K-Means
 - Technical advice
- Applications

K-Means Clustering

- Iterative procedure
 1. Initialization: pick \(K \) arbitrary centroids (cluster means)
 2. Assign each sample to the closest centroid.
 3. Adjust the centroids to be the means of the samples assigned to them.
 4. Go to step 2 (until no change)
- Algorithm is guaranteed to converge after finite #iterations.
 - Local optimum
 - Final result depends on initialization.

K-Means Clustering

\[J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2 \]

where

\[r_{nk} = \begin{cases} 1 & \text{if } k = \arg \min_j ||x_n - \mu_j||^2 \\ 0 & \text{otherwise}. \end{cases} \]

In practice, this procedure usually converges quickly to a local optimum.
Example Application: Image Compression

Take each pixel as one data point.

Set the pixel color to the cluster mean.

K-Means Clustering

Summary K-Means

- **Pros**
 - Simple, fast to compute
 - Converges to local minimum of within-cluster squared error

- **Problem cases**
 - Setting k?
 - Sensitive to initial centers
 - Sensitive to outliers
 - Detects spherical clusters only

- **Extensions**
 - Speed-ups possible through efficient search structures
 - General distance measures: k-medoids

Credit Assignment Problem

“Credit Assignment Problem”

- If we are just given \(x \), we don’t know which mixture component this example came from:

 \[
 p(x|\theta) = \sum_{j=1}^{2} \pi_j p(x|\theta_j)
 \]

- We can however evaluate the posterior probability that an observed \(x \) was generated from the first mixture component:

 \[
 p(j = 1|x, \theta) = \frac{p(j = 1, x|\theta)}{p(x|\theta)}
 \]

 \[
 p(j = 1, x|\theta) = p(x|j = 1, \theta) p(j = 1) = p(x|\theta_1) p(j = 1)
 \]

 \[
 p(j = 1|x, \theta) = \frac{p(x|\theta_1) p(j = 1)}{\sum_{j=1}^{2} p(x|\theta_j) p(j)}
 \]

Topics of This Lecture

- Mixture distributions
 - Mixture of Gaussians (MoG)
 - Maximum Likelihood estimation attempt

- K-Means Clustering
 - Algorithm
 - Applications

- EM Algorithm
 - Credit assignment problem
 - MoG estimation
 - EM Algorithm
 - Interpretation of K-Means
 - Technical advice

- Applications

Mixture Density Estimation Example

- Example

 Assume we want to estimate a 2-component MoG model

 \[
 p(x|\theta) = \sum_{j=1}^{2} \pi_j p(x|\theta_j)
 = \pi_1 p(x|\mu_1, \Sigma_1) + \pi_2 p(x|\mu_2, \Sigma_2)
 \]

 If each sample in the training set were labeled \(\pi \in \{1, 2\} \) according to which mixture component (1 or 2) had generated it, then the estimation would be easy.

 Labeled examples = no credit assignment problem.
Mixture Density Estimation Example

- When examples are labeled, we can estimate the Gaussians independently.
 - Using Maximum Likelihood estimation for single Gaussians.

- Notation
 - Let \(l \) be the label for sample \(x_i \).
 - Let \(N \) be the number of samples.
 - Let \(N_j \) be the number of samples labeled \(j \).
 - Then for each \(j \in [1,2] \) we set

\[
\tilde{\mu}_j = \frac{1}{N_j} \sum_{l_i = j} x_i,
\]

\[
\Sigma_j = \frac{1}{N_j} \sum_{l_i = j} (x_i - \tilde{\mu}_j)(x_i - \tilde{\mu}_j)^T.
\]

\[\text{(This also holds in general)}\]

EM Algorithm

- Expectation-Maximization (EM) Algorithm
 - **E-Step**: softly assign samples to mixture components
 \[
 \gamma_j(x_n) = \frac{\pi_j \mathcal{N}(x_n; \tilde{\mu}_j, \Sigma_j)}{\sum_{k=1}^K \pi_k \mathcal{N}(x_n; \tilde{\mu}_k, \Sigma_k)} \quad \forall j = 1, \ldots, K, \quad n = 1, \ldots, N
 \]
 - **M-Step**: re-estimate the parameters (separately for each mixture component) based on the soft assignments
 \[
 \tilde{N}_j = \sum_{i=1}^N \gamma_j(x_i) = \text{soft number of samples labeled } j
 \]
 \[
 \tilde{N}_j \tilde{\mu}_j^{\text{new}} = \frac{1}{N_j} \sum_{l_i = j} \gamma_j(x_i) x_i
 \]
 \[
 \tilde{N}_j \tilde{\Sigma}_j^{\text{new}} = \frac{1}{N_j} \sum_{l_i = j} \gamma_j(x_i)(x_i - \tilde{\mu}_j^{\text{new}})(x_i - \tilde{\mu}_j^{\text{new}})^T
 \]

- Of course, we don’t have such labels \(l_i \).
 - But we can guess what the labels might be based on our current mixture distribution estimate (credit assignment problem).

 - We get soft labels or posterior probabilities of which Gaussian generated which example:
 \[
 \gamma_j(x_i) = p(l_i = j|x_i, \theta) \quad \sum_{j=1}^2 \gamma_j(x_i) = 1 \quad \forall i = 1, \ldots, N
 \]

 - When the Gaussians are almost identical (as in the figure), then \(\gamma_j(x_i) = \gamma_1(x_i) \) for almost any given sample \(x_i \).
 \[\Rightarrow\text{Even small differences can help to determine how to update the Gaussians.}\]

EM - Technical Advice

- When implementing EM, we need to take care to avoid singularities in the estimation!
 - Mixture components may collapse on single data points.
 - E.g. consider the case \(\Sigma = \sigma^2 I \) (this also holds in general)
 - Assume component \(j \) is exactly centered on data point \(x_i \). This data point will then contribute a term in the likelihood function

\[
\mathcal{N}(x_i; x_i, \sigma_j^2 I) = \frac{1}{\sqrt{2\pi\sigma_j^2}} e^{-\frac{1}{2\sigma_j^2}}
\]

 - For \(\sigma_j \to 0 \), this term goes to infinity!

 \[\Rightarrow\text{Need to introduce regularization}\]
 - Enforce minimum width for the Gaussians

EM - Technical Advice (2)

- EM is very sensitive to the initialization
 - Will converge to a local optimum of \(E \).
 - Convergence is relatively slow.
 \[\Rightarrow\text{Initialize with k-Means to get better results!}\]
 - k-Means is itself initialized randomly, will also only find a local optimum.
 - But convergence is much faster.

 - Typical procedure
 - Run k-Means \(M \) times (e.g. \(M = 10-100 \)).
 - Pick the best result (lowest error \(J \)).
 - Use this result to initialize EM.
 - Set \(\mu_k \) to the corresponding cluster mean from k-Means.
 - Initialize \(\Sigma_k \) to the sample covariance of the associated data points.
K-Means Clustering Revisited

- Interpreting the procedure
 1. Initialization: pick K arbitrary centroids (cluster means)
 2. Assign each sample to the closest centroid. (E-Step)
 3. Adjust the centroids to be the means of the samples assigned to them. (M-Step)
 4. Go to step 2 (until no change)

Summary: Gaussian Mixture Models

- Properties
 - Very general, can represent any (continuous) distribution.
 - Once trained, very fast to evaluate.
 - Can be updated online.

- Problems / Caveats
 - Some numerical issues in the implementation
 - Need to apply regularization in order to avoid singularities.
 - EM for MoG is computationally expensive
 - Especially for high-dimensional problems!
 - More computational overhead and slower convergence than k-Means
 - Results very sensitive to initialization
 - Run k-Means for some iterations as initialization!
 - Need to select the number of mixture components K.
 - Model selection problem (see Lecture 10)

Applications

- Mixture models are used in many practical applications.
 - Wherever distributions with complex or unknown shapes need to be represented...

- Popular application in Computer Vision
 - Model distributions of pixel colors.
 - Each pixel is one data point in e.g., RGB space.
 - Learn a MoG to represent the class-conditional densities.
 - Use the learned models to classify other pixels.

Application: Background Model for Tracking

- Train background MoG for each pixel
 - Model “common” appearance variation for each background pixel.
 - Initialization with an empty scene.
 - Update the mixtures over time
 - Adapt to lighting changes, etc.

- Used in many vision-based tracking applications
 - Anything that cannot be explained by the background model is labeled as foreground (object).
 - Easy segmentation if camera is fixed.
Application: Image Segmentation

- User assisted image segmentation
 - User marks two regions for foreground and background.
 - Learn a MoG model for the color values in each region.
 - Use those models to classify all other pixels.
- Simple segmentation procedure
 (building block for more complex applications)

Application: Color-Based Skin Detection

- Collect training samples for skin/non-skin pixels.
- Estimate MoG to represent the skin/non-skin densities
- Classify skin color pixels in novel images

Interested to Try It?

- Here’s how you can access a webcam in Matlab:

  ```matlab
  function out = webcam
  % uses "Image Acquisition Toolbox",
  adaptorName = 'winvideo';
  vidFormat = 'I420_320x240';
  vidObj1= videoinput(adaptorName, 1, vidFormat);
  set(vidObj1, 'ReturnedColorSpace', 'rgb');
  set(vidObj1, 'FramesPerTrigger', 1);
  out = vidObj1 ;

  cam = webcam();
  img=getsnapshot(cam);
  ```

References and Further Reading

- More information about EM and MoG estimation is available in Chapter 2.3.9 and the entire Chapter 9 of Bishop’s book (recommendable to read).

- Additional information
 - Original EM paper:
 - EM tutorial: