Machine Learning - Lecture 4

Linear Discriminant Functions

19.04.2012

Bastian Leibe
RWTH Aachen
http://www.mmp.rwth-aachen.de
леibe@umic.rwth-aachen.de

Many slides adapted from B. Schiele
Course Outline

• Fundamentals (2 weeks)
 ➢ Bayes Decision Theory
 ➢ Probability Density Estimation

• Discriminative Approaches (5 weeks)
 ➢ Linear Discriminant Functions
 ➢ Support Vector Machines
 ➢ Ensemble Methods & Boosting
 ➢ Randomized Trees, Forests & Ferns

• Generative Models (4 weeks)
 ➢ Bayesian Networks
 ➢ Markov Random Fields
Recap: Mixture of Gaussians (MoG)

• “Generative model”

\[
p(x) = \sum_{j=1}^{M} p(x|\theta_j) p(j)
\]

“Weight” of mixture component

Mixture component

Mixture density

\[
p(j) = \pi_j
\]
Recap: Estimating MoGs - Iterative Strategy

- Assuming we knew the values of the hidden variable...

\[
\begin{align*}
\mu_1 &= \frac{\sum_{n=1}^{N} h(j = 1|x_n)x_n}{\sum_{i=1}^{N} h(j = 1|x_n)} \\
\mu_2 &= \frac{\sum_{n=1}^{N} h(j = 2|x_n)x_n}{\sum_{i=1}^{N} h(j = 2|x_n)}
\end{align*}
\]

ML for Gaussian #1

\[
h(j = 1|x_n) = \begin{bmatrix} 1 & 111 \end{bmatrix}
\]

ML for Gaussian #2

\[
h(j = 2|x_n) = \begin{bmatrix} 0 & 000 \end{bmatrix}
\]

Slide credit: Bernt Schiele
Recap: Estimating MoGs - Iterative Strategy

- Assuming we knew the mixture components...

\[p(j = 1|x) > p(j = 2|x) \]

\[p(j = 1|x_n) > p(j = 2|x_n) \]

Bayes decision rule: Decide \(j = 1 \) if \(p(j = 1|x_n) > p(j = 2|x_n) \)

Slide credit: Bernt Schiele
Recap: K-Means Clustering

• Iterative procedure
 1. Initialization: pick K arbitrary centroids (cluster means)
 2. Assign each sample to the closest centroid.
 3. Adjust the centroids to be the means of the samples assigned to them.
 4. Go to step 2 (until no change)

• Algorithm is guaranteed to converge after finite #iterations.
 ▶ Local optimum
 ▶ Final result depends on initialization.

Slide credit: Bernt Schiele
Recap: EM Algorithm

- **Expectation-Maximization (EM) Algorithm**
 - **E-Step**: softly assign samples to mixture components
 \[
 \gamma_j(x_n) \leftarrow \frac{\pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)}{\sum_{k=1}^{N} \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)} \quad \forall j = 1, \ldots, K, \quad n = 1, \ldots, N
 \]
 - **M-Step**: re-estimate the parameters (separately for each mixture component) based on the soft assignments
 \[
 \begin{align*}
 \hat{N}_j & \leftarrow \sum_{n=1}^{N} \gamma_j(x_n) = \text{soft number of samples labeled } j \\
 \hat{\pi}_j^{\text{new}} & \leftarrow \frac{\hat{N}_j}{N} \\
 \hat{\mu}_j^{\text{new}} & \leftarrow \frac{1}{\hat{N}_j} \sum_{n=1}^{N} \gamma_j(x_n)x_n \\
 \hat{\Sigma}_j^{\text{new}} & \leftarrow \frac{1}{\hat{N}_j} \sum_{n=1}^{N} \gamma_j(x_n)(x_n - \hat{\mu}_j^{\text{new}})(x_n - \hat{\mu}_j^{\text{new}})^T
 \end{align*}
 \]

Slide adapted from Bernt Schiele
Summary: Gaussian Mixture Models

• Properties
 - Very general, can represent any (continuous) distribution.
 - Once trained, very fast to evaluate.
 - Can be updated online.

• Problems / Caveats
 - Some numerical issues in the implementation
 ⇒ Need to apply regularization in order to avoid singularities.
 - EM for MoG is computationally expensive
 - Especially for high-dimensional problems!
 - More computational overhead and slower convergence than k-Means
 - Results very sensitive to initialization
 ⇒ Run k-Means for some iterations as initialization!
 - Need to select the number of mixture components K.
 ⇒ Model selection problem (see Lecture 10)

B. Leibe
EM - Technical Advice

• When implementing EM, we need to take care to avoid singularities in the estimation!
 - Mixture components may collapse on single data points.

⇒ Need to introduce regularization
 - Enforce minimum width for the Gaussians
 - E.g., by enforcing that none of its eigenvalues gets too small.

\[\text{eig}(\Sigma) \rightarrow U \begin{bmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_D \end{bmatrix} U^T \]

- if \(\lambda_i < \varepsilon \) then \(\lambda_i = \varepsilon \)
Applications

• Mixture models are used in many practical applications.
 ➢ Wherever distributions with complex or unknown shapes need to be represented...

• Popular application in Computer Vision
 ➢ Model distributions of pixel colors.
 ➢ Each pixel is one data point in e.g. RGB space.
 ⇒ Learn a MoG to represent the class-conditional densities.
 ⇒ Use the learned models to classify other pixels.
Application: Color-Based Skin Detection

- Collect training samples for skin/non-skin pixels.
- Estimate MoG to represent the skin/non-skin densities.

Classify skin color pixels in novel images

Interested to Try It?

- Here's how you can access a webcam in Matlab:

```matlab
function out = webcam
% uses "Image Acquisition Toolbox",
adaptorName = 'winvideo';
vidFormat = 'I420_320x240';
vidObj1 = videoinput(adaptorName, 1, vidFormat);
set(vidObj1, 'ReturnedColorSpace', 'rgb');
set(vidObj1, 'FramesPerTrigger', 1);
out = vidObj1; 

cam = webcam();
img = getsnapshot(cam);
```
Topics of This Lecture

• Linear discriminant functions
 - Definition
 - Extension to multiple classes

• Least-squares classification
 - Derivation
 - Shortcomings

• Generalized linear models
 - Connection to neural networks
 - Generalized linear discriminants & gradient descent
Discriminant Functions

• **Bayesian Decision Theory**

 - Model conditional probability densities $p(x|C_k)$ and priors $p(C_k)$

 - Compute posteriors $p(C_k|x)$ (using Bayes’ rule)

 - Minimize probability of misclassification by maximizing $p(C|x)$.

• **New approach**

 - Directly encode decision boundary

 - Without explicit modeling of probability densities

 - Minimize misclassification probability directly.
Discriminant Functions

- Formulate classification in terms of comparisons
 - Discriminant functions
 \[y_1(x), \ldots, y_K(x) \]
 - Classify \(x \) as class \(C_k \) if
 \[y_k(x) > y_j(x) \quad \forall j \neq k \]

- Examples (Bayes Decision Theory)
 \[y_k(x) = p(C_k | x) \]
 \[y_k(x) = p(x | C_k) p(C_k) \]
 \[y_k(x) = \log p(x | C_k) + \log p(C_k) \]

Slide credit: Bernt Schiele
Discriminant Functions

• Example: 2 classes

\[y_1(x) > y_2(x) \]
\[\iff y_1(x) - y_2(x) > 0 \]
\[\iff y(x) > 0 \]

• Decision functions (from Bayes Decision Theory)

\[y(x) = p(C_1|x) - p(C_2|x) \]
\[y(x) = \ln \frac{p(x|C_1)}{p(x|C_2)} + \ln \frac{p(C_1)}{p(C_2)} \]
Learning Discriminant Functions

• General classification problem
 - Goal: take a new input x and assign it to one of K classes C_k.
 - Given: training set $X = \{x_1, \ldots, x_N\}$
 with target values $T = \{t_1, \ldots, t_N\}$.
 \Rightarrow Learn a discriminant function $y(x)$ to perform the classification.

• 2-class problem
 - Binary target values: $t_n \in \{0, 1\}$

• K-class problem
 - 1-of-K coding scheme, e.g. $t_n = (0, 1, 0, 0, 0)^T$
Linear Discriminant Functions

• 2-class problem
 \[y(x) > 0 : \text{Decide for class } C_1, \text{ else for class } C_2 \]

• In the following, we focus on linear discriminant functions

\[y(x) = \mathbf{w}^T \mathbf{x} + w_0 \]

 weight vector

 “bias” (= threshold)

 If a data set can be perfectly classified by a linear discriminant, then we call it linearly separable.
Linear Discriminant Functions

- Decision boundary $y(x) = 0$ defines a hyperplane
 - Normal vector: w
 - Offset: $\frac{-w_0}{\|w\|}$

$$y(x) = w^T x + w_0$$
Linear Discriminant Functions

Notation
- \(D \): Number of dimensions

\[
\begin{align*}
\mathbf{x} &= \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_D \end{bmatrix}, & \mathbf{w} &= \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_D \end{bmatrix} \\
y(\mathbf{x}) &= \mathbf{w}^T \mathbf{x} + w_0 \\
&= \sum_{i=1}^{D} w_i x_i + w_0 \\
&= \sum_{i=0}^{D} w_i x_i \quad \text{with } x_0 = 1 \quad \text{constant}
\end{align*}
\]
Extension to Multiple Classes

- Two simple strategies

One-vs-all classifiers

- How many classifiers do we need in both cases?
- What difficulties do you see for those strategies?

One-vs-one classifiers

Image source: C.M. Bishop, 2006
Extension to Multiple Classes

• Problem
 - Both strategies result in regions for which the pure classification result \((y_k > 0) \) is ambiguous.
 - In the one-vs-all case, it is still possible to classify those inputs based on the continuous classifier outputs \(y_k > y_j \quad \forall j \neq k \).

• Solution
 - We can avoid those difficulties by taking \(K \) linear functions of the form
 \[
 y_k(x) = w_k^T x + w_k0
 \]
 and defining the decision boundaries directly by deciding for \(C_k \) iff \(y_k > y_j \quad \forall j \neq k \).
 - This corresponds to a 1-of-\(K \) coding scheme
 \[
 t_n = (0, 1, 0, \ldots, 0, 0)^T
 \]

Image source: C.M. Bishop, 2006
Extension to Multiple Classes

- **K-class discriminant**
 - Combination of K linear functions
 \[y_k(x) = w_k^T x + w_{k0} \]
 - Resulting decision hyperplanes:
 \[(w_k - w_j)^T x + (w_{k0} - w_{j0}) = 0 \]

- It can be shown that the decision regions of such a discriminant are always singly connected and convex.
- This makes linear discriminant models particularly suitable for problems for which the conditional densities \(p(x \mid w_i) \) are unimodal.

Image source: C.M. Bishop, 2006
Topics of This Lecture

• Linear discriminant functions
 ➢ Definition
 ➢ Extension to multiple classes

• Least-squares classification
 ➢ Derivation
 ➢ Shortcomings

• Generalized linear models
 ➢ Connection to neural networks
 ➢ Generalized linear discriminants & gradient descent
General Classification Problem

- Classification problem
 - Let’s consider K classes described by linear models
 \[y_k(x) = w_k^T x + w_{k0}, \quad k = 1, \ldots, K \]
 - We can group those together using vector notation
 \[y(x) = \tilde{W}^T \tilde{x} \]
 where
 \[
 \tilde{W} = [\tilde{w}_1, \ldots, \tilde{w}_K] = \begin{bmatrix}
 w_{10} & \cdots & w_{K0} \\
 w_{11} & \cdots & w_{K1} \\
 \vdots & \ddots & \vdots \\
 w_{1D} & \cdots & w_{KD}
 \end{bmatrix}
 \]
 - The output will again be in 1-of-K notation.
 \[t = [t_1, \ldots, t_k]^T. \]
General Classification Problem

- **Classification problem**
 - For the entire dataset, we can write
 \[Y(\tilde{X}) = \tilde{X}\tilde{W} \]
 and compare this to the target matrix \(T \) where
 \[
 \tilde{W} = [\tilde{w}_1, \ldots, \tilde{w}_K] \\
 \tilde{X} = \begin{bmatrix}
 x_1^T \\ \\
 \vdots \\ \\
 x_N^T
 \end{bmatrix} \\
 T = \begin{bmatrix}
 t_1^T \\ \\
 \vdots \\ \\
 t_N^T
 \end{bmatrix}
 \]
 - Result of the comparison:
 \[
 \tilde{X}\tilde{W} - T
 \]
 Goal: Choose \(\tilde{W} \) such that this is minimal!

B. Leibe
Least-Squares Classification

- Simplest approach
 - Directly try to minimize the sum-of-squares error
 - We could write this as

\[
E(w) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_k(x_n; w) - t_{kn})^2
\]

- But let’s stick with the matrix notation for now...
Least-Squares Classification

- Simplest approach
 - Directly try to minimize the sum-of-squares error

 \[E_D(\tilde{W}) = \frac{1}{2} \text{Tr} \left\{ (\tilde{X}\tilde{W} - T)^T(\tilde{X}\tilde{W} - T) \right\} \]

 - Taking the derivative yields

 \[
 \frac{\partial}{\partial W} E_D(\tilde{W}) = \frac{1}{2} \frac{\partial}{\partial W} \text{Tr} \left\{ (\tilde{X}\tilde{W} - T)^T(\tilde{X}\tilde{W} - T) \right\}
 \]

 \[
 = \frac{1}{2} \frac{\partial}{\partial (\tilde{X}\tilde{W} - T)^T(\tilde{X}\tilde{W} - T)} \text{Tr} \left\{ (\tilde{X}\tilde{W} - T)^T(\tilde{X}\tilde{W} - T) \right\}
 \]

 \[
 \cdot \frac{\partial}{\partial \tilde{W}} (\tilde{X}\tilde{W} - T)^T(\tilde{X}\tilde{W} - T)
 \]

 \[
 = \tilde{X}^T(\tilde{X}\tilde{W} - T)
 \]

\[
\sum_{i,j} a_{i,j}^2 = \text{Tr}\{A^TA\}
\]

\[
\text{chain rule:} \quad \frac{\partial Z}{\partial X} = \frac{\partial Z}{\partial Y} \frac{\partial Y}{\partial X}
\]

\[
\text{using:} \quad \frac{\partial}{\partial A} \text{Tr} \{A\} = I
\]
Least-Squares Classification

- Minimizing the sum-of-squares error

\[
\frac{\partial}{\partial \tilde{W}} E_D(\tilde{W}) = \tilde{X}^T(\tilde{X}\tilde{W} - T) = 0
\]

\[
\tilde{X}\tilde{W} = T
\]

\[
\tilde{W} = (\tilde{X}^T\tilde{X})^{-1}\tilde{X}^T T
\]

\[
= \tilde{X}^\dagger T \quad \text{“pseudo-inverse”}
\]

- We then obtain the discriminant function as

\[
y(x) = \tilde{W}^T\tilde{x} = T^T(\tilde{X}^\dagger)^T \tilde{x}
\]

⇒ Exact, closed-form solution for the discriminant function parameters.
Problems with Least Squares

- Least-squares is very sensitive to outliers!
 - The error function penalizes predictions that are “too correct”.

Image source: C.M. Bishop, 2006
Problems with Least-Squares

• Another example:
 - 3 classes (red, green, blue)
 - Linearly separable problem
 - Least-squares solution:
 Most green points are misclassified!

• Deeper reason for the failure
 - Least-squares corresponds to Maximum Likelihood under the assumption of a Gaussian conditional distribution.
 - However, our binary target vectors have a distribution that is clearly non-Gaussian!
 ⇒ Least-squares is the wrong probabilistic tool in this case!

Image source: C.M. Bishop, 2006
Topics of This Lecture

• Linear discriminant functions
 - Definition
 - Extension to multiple classes

• Least-squares classification
 - Derivation
 - Shortcomings

• Generalized linear models
 - Connection to neural networks
 - Generalized linear discriminants & gradient descent
Generalized Linear Models

- Linear model
 \[y(x) = w^T x + w_0 \]

- Generalized linear model
 \[y(x) = g(w^T x + w_0) \]

- \(g(\cdot) \) is called an activation function and may be nonlinear.
- The decision surfaces correspond to
 \[y(x) = \text{const}. \iff w^T x + w_0 = \text{const}. \]
- If \(g \) is monotonous (which is typically the case), the resulting decision boundaries are still linear functions of \(x \).
Generalized Linear Models

- Consider 2 classes:

\[
p(C_1 | x) = \frac{p(x | C_1)p(C_1)}{p(x | C_1)p(C_1) + p(x | C_2)p(C_2)}
\]

\[
= \frac{1}{1 + \frac{p(x | C_2)p(C_2)}{p(x | C_1)p(C_1)}}
\]

\[
= \frac{1}{1 + \exp(-a)} \equiv g(a)
\]

with \(a = \ln \frac{p(x | C_1)p(C_1)}{p(x | C_2)p(C_2)}\)
Logistic Sigmoid Activation Function

\[g(a) \equiv \frac{1}{1 + \exp(-a)} \]

Example: Normal distributions with identical covariance

\[p(x | a) \quad p(x | b) \]

\[p(a | x) \quad p(b | x) \]

Slide credit: Bernt Schiele

B. Leibe
Normalized Exponential

• General case of $K > 2$ classes:

$$p(C_k | x) = \frac{p(x | C_k) p(C_k)}{\sum_j p(x | C_j) p(C_j)}$$

$$= \frac{\exp(a_k)}{\sum_j \exp(a_j)}$$

with
$$a_k = \ln p(x | C_k) p(C_k)$$

➢ This is known as the normalized exponential or softmax function
➢ Can be regarded as a multiclass generalization of the logistic sigmoid.
Relationship to Neural Networks

- **2-Class case**
 \[y(x) = \sum_{i=0}^{D} g(w_i x_i) \text{ with } x_0 = 1 \text{ constant} \]

- **Neural network (“single-layer perceptron”)**

Slide credit: Bernt Schiele
Relationship to Neural Networks

- **Multi-class case**

\[y_k(x) = \sum_{i=0}^{D} g(w_{ki}x_i) \quad \text{with} \quad x_0 = 1 \quad \text{constant} \]

- **Multi-class perceptron**
Logistic Discrimination

- If we use the logistic sigmoid activation function...

\[
g(a) \equiv \frac{1}{1 + \exp(-a)}
\]

\[
y(x) = g(w^T x + w_0)
\]

... then we can interpret the \(y(x) \) as posterior probabilities!
Other Motivation for Nonlinearity

- Recall least-squares classification
 - One of the problems was that data points that are “too correct” have a strong influence on the decision surface under a squared-error criterion.
 \[E(w) = \sum_{n=1}^{N} (y(x_n; w) - t_n)^2 \]
 - Reason: the output of \(y(x_n; w) \) can grow arbitrarily large for some \(x_n \):
 \[y(x; w) = w^T x + w_0 \]
 - By choosing a suitable nonlinearity (e.g. a sigmoid), we can limit those influences:
 \[y(x; w) = g(w^T x + w_0) \]

B. Leibe
Discussion: Generalized Linear Models

• Advantages
 - The nonlinearity gives us more flexibility.
 - Can be used to limit the effect of outliers.
 - Choice of a sigmoid leads to a nice probabilistic interpretation.

• Disadvantage
 - Least-squares minimization in general no longer leads to a closed-form analytical solution.
 ⇒ Need to apply iterative methods.
 ⇒ Gradient descent.
Linear Separability

- Up to now: restrictive assumption
 - Only consider linear decision boundaries

- Classical counterexample: XOR
Linear Separability

- Even if the data is not linearly separable, a linear decision boundary may still be “optimal”.
 - Generalization
 - E.g. in the case of Normal distributed data (with equal covariance matrices)

- Choice of the right discriminant function is important and should be based on
 - Prior knowledge (of the general functional form)
 - Empirical comparison of alternative models
 - Linear discriminants are often used as benchmark.
Generalized Linear Discriminants

• Generalization
 - Transform vector \mathbf{x} with M nonlinear basis functions $\phi_j(\mathbf{x})$:
 \[y_k(\mathbf{x}) = \sum_{j=0}^{M} w_{kj} \phi_j(\mathbf{x}) + w_{k0} \]
 - Purpose of $\phi_j(\mathbf{x})$: basis functions
 - Allow non-linear decision boundaries.
 - By choosing the right ϕ_j, every continuous function can (in principle) be approximated with arbitrary accuracy.

• Notation
 \[y_k(\mathbf{x}) = \sum_{j=0}^{M} w_{kj} \phi_j(\mathbf{x}) \quad \text{with} \quad \phi_0(\mathbf{x}) = 1 \]
Generalized Linear Discriminants

- **Model**

\[y_k(x) = \sum_{j=0}^{M} w_{kj} \phi_j(x) = y_k(x; w) \]

 - K functions (outputs) \(y_k(x; w) \)

- **Learning in Neural Networks**
 - Single-layer networks: \(\phi_j \) are fixed, only weights \(w \) are learned.
 - Multi-layer networks: both the \(w \) and the \(\phi_j \) are learned.

- In the following, we will not go into details about neural networks in particular, but consider generalized linear discriminants in general...
Gradient Descent

- Learning the weights w:
 - N training data points: $X = \{x_1, \ldots, x_N\}$
 - K outputs of decision functions: $y_k(x_n; w)$
 - Target vector for each data point: $T = \{t_1, \ldots, t_N\}$

- Error function (least-squares error) of linear model

$$E(w) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_k(x_n; w) - t_{kn})^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(x_n) - t_{kn} \right)^2$$

Slide credit: Bernt Schiele
Gradient Descent

• Problem
 - The error function can in general no longer be minimized in closed form.

• Idea (Gradient Descent)
 - Iterative minimization
 - Start with an initial guess for the parameter values $w_{k,j}^{(0)}$.
 - Move towards a (local) minimum by following the gradient.

$$w_{k,j}^{(\tau+1)} = w_{k,j}^{(\tau)} - \eta \left. \frac{\partial E(w)}{\partial w_{k,j}} \right|_{w^{(\tau)}}$$

η: Learning rate

- This simple scheme corresponds to a 1st-order Taylor expansion (There are more complex procedures available).
Gradient Descent - Basic Strategies

- “Batch learning”

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E(w)}{\partial w_{kj}} \right|_{w^{(\tau)}}$$

$$\eta: \text{Learning rate}$$

- Compute the gradient based on all training data:

$$\frac{\partial E(w)}{\partial w_{kj}}$$
Gradient Descent - Basic Strategies

- “Sequential updating”

\[E(w) = \sum_{n=1}^{N} E_n(w) \]

\[w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E_n(w)}{\partial w_{kj}} \right|_{w^{(\tau)}} \]

\(\eta \): Learning rate

- Compute the gradient based on a single data point at a time:

\[\frac{\partial E_n(w)}{\partial w_{kj}} \]
Gradient Descent

- Error function

\[E(w) = \sum_{n=1}^{N} E_n(w) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(x_n) - t_{kn} \right)^2 \]

\[E_n(w) = \frac{1}{2} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(x_n) - t_{kn} \right)^2 \]

\[\frac{\partial E_n(w)}{\partial w_{kj}} = \left(\sum_{\tilde{j}=1}^{M} w_{k\tilde{j}} \phi_{\tilde{j}}(x_n) - t_{kn} \right) \phi_j(x_n) \]

\[= (y_k(x_n; w) - t_{kn}) \phi_j(x_n) \]
Gradient Descent

- Delta rule (=LMS rule)

\[w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta (y_k(x_n; w) - t_{kn}) \phi_j(x_n) \]

\[= w_{kj}^{(\tau)} - \eta \delta_{kn} \phi_j(x_n) \]

where

\[\delta_{kn} = y_k(x_n; w) - t_{kn} \]

\[\Rightarrow \text{Simply feed back the input data point, weighted by the classification error.} \]
Gradient Descent

- Cases with differentiable, non-linear activation function

\[y_k(x) = g(a_k) = g \left(\sum_{j=0}^{M} w_{ki} \phi_j(x_n) \right) \]

- Gradient descent

\[\frac{\partial E_n(w)}{\partial w_{kj}} = \frac{\partial g(a_k)}{\partial w_{kj}} (y_k(x_n; w) - t_{kn}) \phi_j(x_n) \]

\[w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \delta_{kn} \phi_j(x_n) \]

\[\delta_{kn} = \frac{\partial g(a_k)}{\partial w_{kj}} (y_k(x_n; w) - t_{kn}) \]
Summary: Generalized Linear Discriminants

• Properties
 - General class of decision functions.
 - Nonlinearity $g(\cdot)$ and basis functions ϕ_j allow to address linearly non-separable problems.
 - Shown simple sequential learning approach for parameter estimation using gradient descent.
 - Better 2nd order gradient descent approaches available (e.g. Newton-Raphson).

• Limitations / Caveats
 - Flexibility of model is limited by curse of dimensionality
 - $g(\cdot)$ and ϕ_j often introduce additional parameters.
 - Models are either limited to lower-dimensional input space or need to share parameters.
 - Linearly separable case often leads to overfitting.
 - Several possible parameter choices minimize training error.
What Does It Mean?

• What does it mean to apply a linear classifier?

\[y(x) = \tilde{w}^T \tilde{x} \]

Weight vector \quad Input vector

• Classifier interpretation

- The weight vector has the same dimensionality as \(x \).
- Positive contributions where \(\text{sign}(x_i) = \text{sign}(w_i) \).

\[\Rightarrow \text{The weight vector identifies which input dimensions are important for positive or negative classification (large } |w_i| \text{) and which ones are irrelevant (near-zero } w_i \text{).} \]

\[\Rightarrow \text{If the inputs } x \text{ are normalized, we can interpret } w \text{ as a “template” vector that the classifier tries to match.} \]

\[w^T x = ||w|| ||x|| \cos \theta \]

B. Leibe
References and Further Reading

- More information on Linear Discriminant Functions can be found in Chapter 4 of Bishop’s book (in particular Chapter 4.1).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006