Recap: Linear Discriminant Functions

- Basic idea
 - Directly encode decision boundary
 - Minimize misclassification probability directly.
- Linear discriminant functions
 \[y(x) = w^T x + w_0 \]
 - \(w, w_0 \) define a hyperplane in \(\mathbb{R}^D \).
 - If a data set can be perfectly classified by a linear discriminant, then we call it linearly separable.

Recap: Least-Squares Classification

- Simplest approach
 - Directly try to minimize the sum-of-squares error
 \[E(w) = \sum_{n=1}^{N} (y(x_n; w) - t_n)^2 \]
 - Setting the derivative to zero yields
 \[\mathbf{W} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{T} \]
 - We then obtain the discriminant function as
 \[y(x) = \mathbf{W}^T \mathbf{x} = \mathbf{T}^T \mathbf{X}^{-1} \mathbf{X}^T \mathbf{x} \]
 - \(\Rightarrow \) Exact, closed-form solution for the discriminant function parameters.

Recap: Problems with Least Squares

- Least-squares is very sensitive to outliers!
 - The error function penalizes predictions that are “too correct”.

Recap: Generalized Linear Models

- Generalized linear model
 \[y(x) = g(w^T x + w_0) \]
 - \(g(\cdot) \) is called an activation function and may be nonlinear.
 - The decision surfaces correspond to
 \[y(x) = \text{const.} \iff w^T x + w_0 = \text{const.} \]
 - If \(g \) is monotonous (which is typically the case), the resulting decision boundaries are still linear functions of \(x \).
- Advantages of the non-linearity
 - Can be used to bound the influence of outliers and “too correct” data points.
 - When using a sigmoid for \(g(\cdot) \), we can interpret the \(y(x) \) as posterior probabilities.
Recap: Linear Separability

- Up to now: restrictive assumption
 - Only consider linear decision boundaries
- Classical counterexample: XOR

Recap: Probabilistic Discriminative Models

- Fisher’s Linear Discriminant (FLD)
- Start with an initial guess for the parameter values $w^{(0)}$
- By choosing the right ϕ,...
- Sequential updating leads to...

Advantages

- Transformation allows non-linear decision boundaries.
- By choosing the right ϕ,...

Disadvantage

- The error function can in general no longer be minimized in closed form.
 - Minimization with Gradient Descent

Recap: Iterative Gradient Descent

- Iterative minimization
 - Start with an initial guess for the parameter values $w^{(0)}$
 - Move towards a (local) minimum by following the gradient.
- Basic strategies
 - “Batch learning” $w^{(r+1)}_{kj} = w^{(r)}_{kj} - \eta \frac{\partial E(w)}{\partial w_{kj}} \bigg|_{w^{(r)}}$
 - “Sequential updating” $w^{(r+1)}_{kj} = w^{(r)}_{kj} - \eta \frac{\partial E_n(w)}{\partial w_{kj}} \bigg|_{w^{(r)}}$
- Simply feed back the input data point, weighted by the classification error.

Recap: Extension to Nonlinear Basis Funcs.

- Generalization
 - Transform vector x with M nonlinear basis functions $\phi_j(x)$:
 $$y_k(x) = \sum_{j=1}^{M} w_{kj}\phi_j(x) + w_{k0}$$
- Advantages
 - Transformation allows non-linear decision boundaries.
 - By choosing the right ϕ,...
- Disadvantage
 - The error function can in general no longer be minimized in closed form.
 - Minimization with Gradient Descent

Recap: Gradient Descent

- Example: Quadratic error function
 $$E(w) = \sum_{n=1}^{N} (y(x_n; w) - t_n)^2$$
- Sequential updating leads to delta rule (=LMS rule)
 $$w^{(r+1)}_{kj} = w^{(r)}_{kj} - \eta (y_k(x_n; w) - t_{kn}) \phi_j(x_n)$$
 $$\delta_{kn} = y_k(x_n; w) - t_{kn}$$
 - Minimization with Gradient Descent

Recap: Gradient Descent

- Cases with differentiable, non-linear activation function
 $$y_k(x) = g(a_k) = g \left(\sum_{j=0}^{M} w_{kj}\phi_j(x_n) \right)$$
- Gradient descent (again with quadratic error function)
 $$\frac{\partial E_n(w)}{\partial w_{kj}} = \frac{\partial g(a_k)}{\partial w_{kj}} (y_k(x_n; w) - t_{kn}) \phi_j(x_n)$$
 $$w^{(r+1)}_{kj} = w^{(r)}_{kj} - \eta \delta_{kn} \phi_j(x_n)$$
 $$\delta_{kn} = \frac{\partial g(a_k)}{\partial w_{kj}} (y_k(x_n; w) - t_{kn})$$

Topics of This Lecture

- Logistic Regression
 - Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
 - Gradient descent
 - Iteratively Reweighted Least Squares
- Note on Error Functions
Classification as Dimensionality Reduction

- Classification as dimensionality reduction
 - We can interpret the linear classification model as a projection onto a lower-dimensional space.
 - E.g., take the D-dimensional input vector x and project it down to one dimension by applying the function
 \[y = w^T x \]
 - If we now place a threshold at $y \geq -w_0$, we obtain our standard two-class linear classifier.
 - The classifier will have a lower error the better this projection separates the two classes.

 \[\Rightarrow \text{New interpretation of the learning problem} \]
 - Try to find the projection vector w that maximizes the class separation.

How to measure class separation?

- Classification function:
 \[J(w) = \frac{w^T S_B w}{w^T S_W w} \]

 These problems exist.
 - We could simply measure the separation of the class means.
 \[(m_2 - m_1) = w^T (m_2 - m_1) \]
 \[\Rightarrow \text{Choose } w \text{ so as to maximize} \]

- Problems with this approach
 1. This expression can be made arbitrarily large by increasing $|w|$.
 \[\Rightarrow \text{Need to enforce additional constraint} ||w|| = 1 \]
 \[\Rightarrow \text{This constrained minimization results in} \]

- Better idea:
 \[w / (m_2 - m_1) \]

Fisher’s Linear Discriminant Analysis (FLD)

- Better idea:
 \[J(w) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2} \text{ with } s_k^2 = \sum_{n \in C_k} (y_n - m_k)^2 \]

- Usually, this is written as
 \[J(w) = \frac{w^T S_B w}{w^T S_W w} \]

 \[\text{where} \]
 \[S_B = (m_2 - m_1)(m_2 - m_1)^T \]

 \[S_W = \sum_{k=1}^{K} \sum_{n \in C_k} (x_n - m_k)(x_n - m_k)^T \]

 \[J(W) = jW^T S_B W j \]

 \[jW^T S_W W j \]

Multiple Discriminant Analysis

- Generalization to K classes
 \[J(W) = \frac{|W^T S_B W|}{|W^T S_W W|} \]

 \[\text{where} \]
 \[W = [w_1, \ldots, w_K] \]

 \[m = \frac{1}{N} \sum_{n=1}^{N} x_n = \frac{1}{K} \sum_{k=1}^{K} N_k m_k \]

 \[S_B = \sum_{k=1}^{K} N_k (m_k - m)(m_k - m)^T \]

 \[S_W = \sum_{k=1}^{K} \sum_{n \in C_k} (x_n - m_k)(x_n - m_k)^T \]
Maximizing $J(W)$

- "Rayleigh quotient" \Rightarrow Generalized eigenvalue problem
 $$J(W) = \frac{W^T S_B W}{W^T S_W W}$$
 - The columns of the optimal W are the eigenvectors corresponding to the largest eigenvalues of $S_B W_i = \lambda_i S_W W_i$
 - Defining $V = S_B^{-1} W$, we get
 $$S_W S_B^{-1} S_W V = \lambda V$$
 which is a regular eigenvalue problem.
 - Solve to get eigenvectors of V, then from that of W.

- For the K-class case we obtain (at most) $K-1$ projections. (i.e. eigenvectors corresponding to non-zero eigenvalues.)

What Does It Mean?

- What does it mean to apply a linear classifier?
 $$y(x) = \tilde{W}^T x$$
 Weight vector Input vector

- Classifier interpretation
 - The weight vector has the same dimensionality as x.
 - Positive contributions where $\text{sign}(x_i) = \text{sign}(w_i)$.
 - The weight vector identifies which input dimensions are important for positive or negative classification (large $|w_i|$) and which ones are irrelevant (near-zero w_i).
 - If the inputs x are normalized, we can interpret w as a "template" vector that the classifier tries to match.

Example Application: Fisherfaces

- Visual discrimination task
 - Training data:
 - C_1: Subjects with glasses
 - C_2: Subjects without glasses
 - Test:
 - x - glasses?

 Take each image as a vector of pixel values and apply FLD...

Fisherfaces: Interpretability

- Resulting weight vector for "Glasses/NoGlasses"

Summary: Fisher’s Linear Discriminant

- Properties
 - Simple method for dimensionality reduction, preserves class discriminability.
 - Can use parametric methods in reduced-dim. space that might not be feasible in original higher-dim. space.
 - Widely used in practical applications.

- Restrictions / Caveats
 - Not possible to get more than $K-1$ projections.
 - FLD reduces the computation to class means and covariances.
 - Implicit assumption that class distributions are unimodal and well-approximated by a Gaussian/hyperellipsoid.

Topics of This Lecture

- Fisher’s linear discriminant (FLD)
 - Classification as dimensionality reduction
 - Linear discriminant analysis
 - Multiple discriminant analysis
 - Applications

- Logistic Regression
 - Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
 - Gradient descent
 - Iteratively Reweighted Least Squares

- Note on Error Functions
Probabilistic Discriminative Models

- We have seen that we can write
 \[p(C_1|x) = \sigma(a) = \frac{1}{1 + \exp(-a)} \]
- We can obtain the familiar probabilistic model by setting
 \[a = \ln \frac{p(x|C_1)p(C_1)}{p(x|C_2)p(C_2)} \]
- Or we can use generalized linear discriminant models
 \[a = w^T x \]
 or \[a = w^T \phi(x) \]

B. Leibe

Comparison

- Let’s look at the number of parameters...
 - Assume we have an \(M \)-dimensional feature space \(\phi \).
 - And assume we represent \(p(\phi|C_1) \) and \(p(\phi|C_2) \) by Gaussians.
 - How many parameters do we need?
 - For the means: \(2M \)
 - For the covariances: \(M(M+1)/2 \)
 - Together with the class priors, this gives \(M(M+5)/2 + 1 \) parameters!
 - How many parameters do we need for logistic regression?
 - Just the values of \(w \) \(\Rightarrow \) For large \(M \), logistic regression has clear advantages!

B. Leibe

Logistic Sigmoid

- Properties
 - Definition: \(\sigma(a) = \frac{1}{1 + \exp(-a)} \)
 - Inverse: \(a = \ln \left(\frac{\sigma}{1 - \sigma} \right) \) \(\Rightarrow \) “logit” function
 - Symmetry property: \(\sigma(-a) = 1 - \sigma(a) \)
 - Derivative: \(\frac{d\sigma}{da} = \sigma(1 - \sigma) \)

B. Leibe

Logistic Regression

- Let’s consider a data set \(\{\phi_n, t_n\} \) with \(n = 1, \ldots, N \), where \(\phi_n = \phi(x_n) \) and \(t_n \in \{0, 1\}, \ t = (t_1, \ldots, t_N)^T \).
- With \(y_n = p(C_1|\phi_n) \), we can write the likelihood as
 \[p(t|w) = \prod_{n=1}^{N} y_n^{t_n}(1 - y_n)^{1-t_n} \]
- Define the error function as the negative log-likelihood
 \[E(w) = -\ln p(t|w) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\} \]
 - This is the so-called cross-entropy error function.

B. Leibe

Gradient of the Error Function

- Error function
 \[y_n = \sigma(w^T \phi_n) \]
 \[dE/dw = y_n(1 - y_n) \phi_n \]
- Gradient
 \[\nabla E(w) = -\sum_{n=1}^{N} \left\{ t_n \frac{d}{d\phi_n} \frac{y_n}{y_n + (1 - y_n)} + (1 - t_n) \frac{d}{d\phi_n} \frac{1 - y_n}{y_n + (1 - y_n)} \right\} \]
 \[= -\sum_{n=1}^{N} \left\{ t_n \frac{y_n - y_n \phi_n - (1 - y_n) \phi_n}{y_n + (1 - y_n)} \phi_n \right\} \]
 \[= \sum_{n=1}^{N} \{y_n - t_n\} \phi_n \]
Gradient of the Error Function

- Gradient for logistic regression
 \[\nabla E(w) = \sum_{n=1}^{N} (y_n - t_n) \phi_n \]

- Does this look familiar to you?
- This is the same result as for the Delta (=LMS) rule
 \[w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta (y_k(x_n; w) - t_{kn}) \phi_j(x_n) \]
- We can use this to derive a sequential estimation algorithm.
 - However, this will be quite slow...

A More Efficient Iterative Method...

- Second-order Newton-Raphson gradient descent scheme
 \[w^{(\tau+1)} = w^{(\tau)} - H^{-1} \nabla E(w) \]
 where \(H = \nabla^2 E(w) \) is the Hessian matrix, i.e. the matrix of second derivatives.

- Properties
 - Local quadratic approximation to the log-likelihood.
 - Faster convergence.

Newton-Raphson for Least-Squares Estimation

- Let’s first apply Newton-Raphson to the least-squares error function:
 \[E(w) = \frac{1}{2} \sum_{n=1}^{N} (w^T \phi_n - t_n)^2 \]

- Resulting update rule:
 \[w^{(\tau+1)} = w^{(\tau)} - (\Phi^T \Phi)^{-1} (\Phi^T \Phi w^{(\tau)} - \Phi^T t) \]
 \[= (\Phi^T \Phi)^{-1} \Phi^T t \] Closed-form solution!

Iteratively Reweighted Least Squares

- Update equations
 \[w^{(\tau+1)} = w^{(\tau)} - (\Phi^T R \Phi)^{-1} \Phi^T (y - t) \]
 \[= (\Phi^T R \Phi)^{-1} \left(\Phi^T R \Phi w^{(\tau)} - \Phi^T (y - t) \right) \]
 \[= (\Phi^T R \Phi)^{-1} \Phi^T R z \] with \(z = \Phi w^{(\tau)} - R^{-1} (y - t) \)

- Again very similar form (normal equations)
 - But now with non-constant weighing matrix \(R \) (depends on \(w \)).
 - Need to apply normal equations iteratively.
 \(\Rightarrow \) Iteratively Reweighted Least-Squares (IRLS)

Summary: Logistic Regression

- Properties
 - Directly represent posterior distribution \(p(\theta | \mathcal{D}) \)
 - Requires fewer parameters than modeling the likelihood + prior.
 - Very often used in statistics.
 - It can be shown that the cross-entropy error function is concave
 - Optimization leads to unique minimum
 - But no closed-form solution exists
 - Iterative optimization (IRLS)
 - Both online and batch optimizations exist
 - There is a multi-class version described in (Bishop Ch. 4.3.4).
- Caveat
 - Logistic regression tends to systematically overestimate odds ratios when the sample size is less than ~500.
Topics of This Lecture

- Fisher’s linear discriminant (FLD)
 - Classification as dimensionality reduction
 - Linear discriminant analysis
 - Multiple discriminant analysis
 - Applications
- Logistic Regression
 - Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
 - Gradient descent
 - Iteratively Reweighted Least Squares
- Note on Error Functions

Note on Error Functions

- We have now seen already a number of error functions
 - Ideal misclassification error
 - Quadratic error
 - Cross-entropy error

Error Functions

- **Ideal Misclassification Error**
 - This is what we would like to optimize.
 - But cannot compute gradients here.

- **Quadratic Error**
 - Easy to optimize, closed-form solutions exist.
 - But not robust to outliers.

- **Cross-Entropy Error**
 - Minimizer of this error is given by posterior class probabilities.
 - Concave error function, unique minimum exists.
 - But no closed-form solution, requires iterative estimation.

References and Further Reading

- More information on Linear Discriminant Functions can be found in Chapter 4 of Bishop’s book (in particular Chapter 4.1 - 4.3).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006