Machine Learning - Lecture 10

Decision Trees & Randomized Trees

05.06.2012 / 11.06.2012

Bastian Leibe
RWTH Aachen
http://www.mmp.rwth-aachen.de
leibe@umic.rwth-aachen.de
Course Outline

- **Fundamentals (2 weeks)**
 - Bayes Decision Theory
 - Probability Density Estimation

- **Discriminative Approaches (5 weeks)**
 - Linear Discriminant Functions
 - Statistical Learning Theory & SVMs
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns

- **Generative Models (4 weeks)**
 - Bayesian Networks
 - Markov Random Fields
Topics of This Lecture

• Decision Trees
 - CART
 - Impurity measures, Stopping criterion, Pruning
 - Extensions, Issues
 - Historical development: ID3, C4.5

• Randomized Decision Trees
 - Randomized attribute selection

• Random Forests
 - Bootstrap sampling
 - Ensemble of randomized trees
 - Posterior sum combination
 - Analysis

• Extremely randomized trees
 - Random attribute selection
Decision Trees

• Very old technique
 - Origin in the 60s, might seem outdated.

• But...
 - Can be used for problems with nominal data
 - E.g. attributes color ∈ {red, green, blue} or weather ∈ {sunny, rainy}.
 - Discrete values, no notion of similarity or even ordering.
 - Interpretable results
 - Learned trees can be written as sets of if-then rules.
 - Methods developed for handling missing feature values.
 - Successfully applied to broad range of tasks
 - E.g. Medical diagnosis
 - E.g. Credit risk assessment of loan applicants
 - Some interesting novel developments building on top of them...
Decision Trees

- Example:
 - “Classify Saturday mornings according to whether they’re suitable for playing tennis.”
Decision Trees

- **Elements**
 - Each node specifies a test for some attribute.
 - Each branch corresponds to a possible value of the attribute.
Decision Trees

• Assumption
 - Links must be mutually distinct and exhaustive
 - I.e. one and only one link will be followed at each step.

• Interpretability
 - Information in a tree can then be rendered as logical expressions.
 - In our example:

\[
\begin{align*}
(\text{Outlook} = \text{Sunny} \land \text{Humidity} = \text{Normal}) \\
\lor (\text{Outlook} = \text{Overcast}) \\
\lor (\text{Outlook} = \text{Rain} \land \text{Wind} = \text{Weak})
\end{align*}
\]

Training Decision Trees

• Finding the optimal decision tree is NP-hard...

• Common procedure: Greedy top-down growing
 ➢ Start at the root node.
 ➢ Progressively split the training data into smaller and smaller subsets.
 ➢ In each step, pick the *best attribute* to split the data.
 ➢ If the resulting subsets are pure (only one label) or if no further attribute can be found that splits them, terminate the tree.
 ➢ Else, recursively apply the procedure to the subsets.

• CART framework
 ➢ *Classification And Regression Trees* (Breiman et al. 1993)
 ➢ Formalization of the different design choices.
CART Framework

- Six general questions
 1. Binary or multi-valued problem?
 - I.e. how many splits should there be at each node?
 2. Which property should be tested at a node?
 - I.e. how to select the query attribute?
 3. When should a node be declared a leaf?
 - I.e. when to stop growing the tree?
 4. How can a grown tree be simplified or pruned?
 - Goal: reduce overfitting.
 5. How to deal with impure nodes?
 - I.e. when the data itself is ambiguous.
 6. How should missing attributes be handled?
CART - 1. Number of Splits

- Each multi-valued tree can be converted into an equivalent binary tree:

⇒ Only consider binary trees here...
CART - 2. Picking a Good Splitting Feature

• Goal
 - Want a tree that is as simple/small as possible (Occam’s razor).
 - But: Finding a minimal tree is an NP-hard optimization problem.

• Greedy top-down search
 - Efficient, but not guaranteed to find the smallest tree.
 - Seek a property T at each node N that makes the data in the child nodes as pure as possible.
 - For formal reasons more convenient to define impurity $i(N)$.
 - Several possible definitions explored.
CART - Impurity Measures

- **Misclassification impurity**

\[i(N) = 1 - \max_j p(C_j | N) \]

“Fraction of the training patterns in category \(C_j \) that end up in node \(N \).”

Problem: discontinuous derivative!

CART - Impurity Measures

- Entropy impurity

\[i(N) = -\sum_{j} p(C_j|N) \log_2 p(C_j|N) \]

“Reduction in entropy = gain in information.”
CART - Impurity Measures

- **Gini impurity (variance impurity)**

\[
i(N) = \sum_{i \neq j} p(C_i|N)p(C_j|N)
\]

\[
= \frac{1}{2} \left[1 - \sum_j p^2(C_j|N) \right]
\]

“Expected error rate at node \(N\) if the category label is selected randomly.”

CART - Impurity Measures

• Which impurity measure should we choose?
 ➢ Some problems with misclassification impurity.
 - Discontinuous derivative.
 ⇒ Problems when searching over continuous parameter space.
 - Sometimes misclassification impurity does not decrease when Gini impurity would.
 ➢ Both entropy impurity and Gini impurity perform well.
 - No big difference in terms of classifier performance.
 - In practice, stopping criterion and pruning method are often more important.
CART - 2. Picking a Good Splitting Feature

• Application
 - Select the query that decreases impurity the most
 \[\Delta i(N) = i(N) - P_L i(N_L) - (1 - P_L) i(N_R) \]

• Multiway generalization (gain ratio impurity):
 - Maximize
 \[\Delta i(s) = \frac{1}{Z} \left(i(N) - \sum_{k=1}^{K} P_k i(N_k) \right) \]
 - where the normalization factor ensures that large K are not inherently favored:
 \[Z = - \sum_{k=1}^{K} P_k \log_2 P_k \]
CART - Picking a Good Splitting Feature

- For efficiency, splits are often based on a single feature
 - “Monothetic decision trees”

- Evaluating candidate splits
 - Nominal attributes: exhaustive search over all possibilities.
 - Real-valued attributes: only need to consider changes in label.
 - Order all data points based on attribute x_i.
 - Only need to test candidate splits where $\text{label}(x_i) \neq \text{label}(x_{i+1})$.
CART - 3. When to Stop Splitting

• **Problem: Overfitting**
 - Learning a tree that classifies the training data perfectly may not lead to the tree with the best generalization to unseen data.
 - **Reasons**
 - Noise or errors in the training data.
 - Poor decisions towards the leaves of the tree that are based on very little data.

• **Typical behavior**

![Graph showing accuracy vs. hypothesis complexity on training and test data](image)

Slide adapted from Raymond Mooney
CART - Overfitting Prevention (Pruning)

- Two basic approaches for decision trees
 - **Prepruning**: Stop growing tree as some point during top-down construction when there is no longer sufficient data to make reliable decisions.
 - **Postpruning**: Grow the full tree, then remove subtrees that do not have sufficient evidence.

- Label leaf resulting from pruning with the majority class of the remaining data, or a class probability distribution.

\[
C_N = \operatorname{arg\,max}_k p(C_k|N)
\]
CART - Stopping Criterion

- Determining which subtrees to prune:
 - Cross-validation: Reserve some training data as a hold-out set (validation set, tuning set) to evaluate utility of subtrees.
 - Statistical test: Determine if any observed regularity can be dismissed as likely due to random chance.
 - Determine the probability that the outcome of a candidate split could have been generated by a random split.
 - Chi-squared statistic (one degree of freedom)
 \[
 \chi^2 = \sum_{i=1}^{2} \frac{(n_{i,\text{left}} - \hat{n}_{i,\text{left}})^2}{\hat{n}_{i,\text{left}}} \]
 “expected number from random split”
 - Compare to critical value at certain confidence level (table lookup).
 - Minimum description length (MDL): Determine if the additional complexity of the hypothesis is less complex than just explicitly remembering any exceptions resulting from pruning.
CART - 4. (Post-)Pruning

- Stopped splitting often suffers from “horizon effect”
 - Decision for optimal split at node N is independent of decisions at descendent nodes.
 - Might stop splitting too early.
 - Stopped splitting biases learning algorithm towards trees in which the greatest impurity reduction is near the root node.

- Often better strategy
 - Grow tree fully (until leaf nodes have minimum impurity).
 - Then prune away subtrees whose elimination results only in a small increase in impurity.

- Benefits
 - Avoids the horizon effect.
 - Better use of training data (no hold-out set for cross-validation).
(Post-)Pruning Strategies

• Common strategies
 - Merging leaf nodes
 - Consider pairs of neighboring leaf nodes.
 - If their elimination results only in small increase in impurity, prune them.
 - Procedure can be extended to replace entire subtrees with leaf node directly.
 - Rule-based pruning
 - Each leaf has an associated rule (conjunction of individual decisions).
 - Full tree can be described by list of rules.
 - Can eliminate irrelevant preconditions to simplify the rules.
 - Can eliminate rules to improve accuracy on validation set.
 - Advantage: can distinguish between the contexts in which the decision rule at a node is used \(\Rightarrow\) can prune them selectively.
Decision Trees - Handling Missing Attributes

- During training
 - Calculate impurities at a node using only the attribute information present.
 - E.g. 3-dimensional data, one point is missing attribute x_3.
 - Compute possible splits on x_1 using all N points.
 - Compute possible splits on x_2 using all N points.
 - Compute possible splits on x_3 using $N-1$ non-deficient points.
 ⇒ Choose split which gives greatest reduction in impurity.

- During test
 - Cannot handle test patterns that are lacking the decision attribute!
 ⇒ In addition to primary split, store an ordered set of surrogate splits that try to approximate the desired outcome based on different attributes.
Decision Trees - Feature Choice

- Best results if proper features are used

Bad tree
Decision Trees - Feature Choice

- Best results if proper features are used
 - Preprocessing to find important axes often pays off.
Decision Trees - Non-Uniform Cost

• Incorporating category priors
 - Often desired to incorporate different priors for the categories.
 - Solution: weight samples to correct for the prior frequencies.

• Incorporating non-uniform loss
 - Create loss matrix λ_{ij}
 - Loss can easily be incorporated into Gini impurity

$$i(N) = \sum_{ij} \lambda_{ij} p(C_i) p(C_j)$$
Historical Development

- **ID3 (Quinlan 1986)**
 - One of the first widely used decision tree algorithms.
 - Intended to be used with nominal (unordered) variables
 - Real variables are first binned into discrete intervals.
 - General branching factor
 - Use gain ratio impurity based on entropy (information gain) criterion.

- **Algorithm**
 - Select attribute a that best classifies examples, assign it to root.
 - For each possible value v_i of a,
 - Add new tree branch corresponding to test $a = v_i$.
 - If example_list(v_i) is empty, add leaf node with most common label in example_list(a).
 - Else, recursively call ID3 for the subtree with attributes $A \setminus a$.
Historical Development

• C4.5 (Quinlan 1993)
 - Improved version with extended capabilities.
 - Ability to deal with real-valued variables.
 - Multiway splits are used with nominal data
 - Using gain ratio impurity based on entropy (information gain) criterion.
 - Heuristics for pruning based on statistical significance of splits.
 - Rule post-pruning

• Main difference to CART
 - Strategy for handling missing attributes.
 - When missing feature is queried, C4.5 follows all B possible answers.
 - Decision is made based on all B possible outcomes, weighted by decision probabilities at node N.
Decision Trees - Computational Complexity

• Given
 - Data points \(\{ x_1, \ldots, x_N \} \)
 - Dimensionality \(D \)

• Complexity
 - Storage: \(O(N) \)
 - Test runtime: \(O(\log N) \)
 - Training runtime: \(O(DN^2 \log N) \)
 - Most expensive part.
 - Critical step: selecting the optimal splitting point.
 - Need to check \(D \) dimensions, for each need to sort \(N \) data points.
 \(O(DN \log N) \)
Summary: Decision Trees

- **Properties**
 - Simple learning procedure, fast evaluation.
 - Can be applied to metric, nominal, or mixed data.
 - Often yield interpretable results.
Summary: Decision Trees

- Limitations
 - Often produce noisy (bushy) or weak (stunted) classifiers.
 - Do not generalize too well.
 - Training data fragmentation:
 - As tree progresses, splits are selected based on less and less data.
 - Overtraining and undertraining:
 - Deep trees: fit the training data well, will not generalize well to new test data.
 - Shallow trees: not sufficiently refined.
 - Stability
 - Trees can be very sensitive to details of the training points.
 - If a single data point is only slightly shifted, a radically different tree may come out!
 ⇒ Result of discrete and greedy learning procedure.
 - Expensive learning step
 - Mostly due to costly selection of optimal split.
References and Further Reading

- More information on Decision Trees can be found in Chapters 8.2-8.4 of Duda & Hart.

R.O. Duda, P.E. Hart, D.G. Stork
Pattern Classification
2nd Ed., Wiley-Interscience, 2000

- The original paper for Random Forests:
Topics of This Lecture

• Decision Trees
 ➢ CART
 ➢ Impurity measures, Stopping criterion, Pruning
 ➢ Extensions, Issues
 ➢ Historical development: ID3, C4.5

• Randomized Decision Trees
 ➢ Randomized attribute selection

• Random Forests
 ➢ Bootstrap sampling
 ➢ Ensemble of randomized trees
 ➢ Posterior sum combination
 ➢ Analysis

• Extremely randomized trees
 ➢ Random attribute selection
Randomized Decision Trees (Amit & Geman 1997)

- Decision trees: main effort on finding good split
 - Training runtime: $O(DN^2 \log N)$
 - This is what takes most effort in practice.
 - Especially cumbersome with many attributes (large D).

- Idea: randomize attribute selection
 - No longer look for globally optimal split.
 - Instead randomly use subset of K attributes on which to base the split.
 - Choose best splitting attribute e.g. by maximizing the information gain ($= \text{reducing entropy}$):
 \[
 \Delta E = \sum_{k=1}^{K} \frac{|S_k|}{|S|} \sum_{j=1}^{N} p_j \log_2(p_j)
 \]
Randomized Decision Trees

- **Randomized splitting**
 - Faster training: $O(KN^2 \log N)$ with $K \ll D$.
 - Use very simple binary feature tests.
 - Typical choice
 - $K = 10$ for root node.
 - $K = 100d$ for node at level d.

- **Effect of random split**
 - Of course, the tree is no longer as powerful as a single classifier...
 - But we can compensate by building several trees.
Ensemble Combination

- Ensemble combination
 - Tree leaves \((l, \eta)\) store posterior probabilities of the target classes.
 \[
 p_{l,\eta}(C|x)
 \]
 - Combine the output of several trees by averaging their posteriors (Bayesian model combination)
 \[
 p(C|x) = \frac{1}{L} \sum_{l=1}^{L} p_{l,\eta}(C|x)
 \]
Applications: Character Recognition

- **Computer Vision: Optical character recognition**
 - Classify small (14x20) images of hand-written characters/digits into one of 10 or 26 classes.

- **Simple binary features**
 - Tests for individual binary pixel values.
 - Organized in randomized tree.

B. Leibe
Applications: Character Recognition

- **Image patches (“Tags”)**
 - Randomly sampled 4×4 patches
 - Construct a randomized tree based on binary single-pixel tests
 - Each leaf node corresponds to a “patch class” and produces a tag

- **Representation of digits (“Queries”)**
 - Specific spatial arrangements of tags
 - An image answers “yes” if any such structure is found anywhere

 - *How do we know which spatial arrangements to look for?*
Applications: Character Recognition

- **Answer: Create a second-level decision tree!**
 - Start with two tags connected by an arc
 - Search through extensions of confirmed queries (or rather through a subset of them, there are lots!)
 - Select query with best information gain
 - Recurse...

- **Classification**
 - Average estimated posterior distributions stored in the leaves.

Slide adapted from Jan Hosang
Applications: Fast Keypoint Detection

- **Computer Vision: fast keypoint detection**
 - Detect keypoints: small patches in the image used for matching
 - Classify into one of ~200 categories (visual words)

- **Extremely simple features**
 - E.g. pixel value in a color channel (CIELab)
 - E.g. sum of two points in the patch
 - E.g. difference of two points in the patch
 - E.g. absolute difference of two points

- **Create forest of randomized decision trees**
 - Each leaf node contains probability distribution over 200 classes
 - Can be updated and re-normalized incrementally.
Application: Fast Keypoint Detection

B. Leibe
Topics of This Lecture

• Decision Trees
 ➢ CART
 ➢ Impurity measures, Stopping criterion, Pruning
 ➢ Extensions, Issues
 ➢ Historical development: ID3, C4.5

• Randomized Decision Trees
 ➢ Randomized attribute selection

• Random Forests
 ➢ Bootstrap sampling
 ➢ Ensemble of randomized trees
 ➢ Posterior sum combination
 ➢ Analysis

• Extremely randomized trees
 ➢ Random attribute selection

B. Leibe
Random Forests (Breiman 2001)

- **General ensemble method**
 - Idea: Create ensemble of many (very simple) trees.

- **Empirically very good results**
 - Often as good as SVMs (and sometimes better)!
 - Often as good as Boosting (and sometimes better)!

- **Standard decision trees: main effort on finding good split**
 - Random Forests trees put very little effort in this.
 - CART algorithm with Gini coefficient, no pruning.
 - Each split is only made based on a random subset of the available attributes.
 - Trees are grown fully (important!).

- **Main secret**
 - Injecting the “right kind of randomness”.

B. Leibe
Random Forests - Algorithmic Goals

- Create many trees (50 - 1,000)
- Inject randomness into trees such that
 - Each tree has maximal strength
 - I.e. a fairly good model on its own
 - Each tree has minimum correlation with the other trees.
 - I.e. the errors tend to cancel out.
- Ensemble of trees votes for final result
 - Simple majority vote for category.
 - Alternative (Friedman)
 - Optimally reweight the trees via regularized regression (lasso).
Random Forests - Injecting Randomness (1)

- Bootstrap sampling process
 - Select a training set by choosing \(N \) times with replacement from all \(N \) available training examples.
 - On average, each tree is grown on only \(~63\%\) of the original training data.
 - Remaining 37\% “out-of-bag” (OOB) data used for validation.
 - Provides ongoing assessment of model performance in the current tree.
 - Allows fitting to small data sets without explicitly holding back any data for testing.
 - Error estimate is unbiased and behaves as if we had an independent test sample of the same size as the training sample.
Random Forests - Injecting Randomness (2)

• Random attribute selection
 - For each node, randomly choose subset of K attributes on which the split is based (typically $K = \sqrt{N_f}$).
 ⇒ Faster training procedure
 - Need to test only few attributes.
 - Minimizes inter-tree dependence
 - Reduce correlation between different trees.

• Each tree is grown to maximal size and is left unpruned
 - Trees are deliberately overfit
 ⇒ Become some form of nearest-neighbor predictor.

\[K = \frac{p}{N_f} \]
A Graphical Interpretation

Different trees induce different partitions on the data.
A Graphical Interpretation

Different trees induce different partitions on the data.

Slide credit: Vincent Lepetit
A Graphical Interpretation

Different trees induce different partitions on the data.

By combining them, we obtain a finer subdivision of the feature space...
A Graphical Interpretation

Different trees induce different partitions on the data.

By combining them, we obtain a finer subdivision of the feature space...

...which at the same time also better reflects the uncertainty due to the bootstrapped sampling.

Slide credit: Vincent Lepetit
Summary: Random Forests

- **Properties**
 - Very simple algorithm.
 - Resistant to overfitting - generalizes well to new data.
 - Faster training
 - Extensions available for clustering, distance learning, etc.

- **Limitations**
 - Memory consumption
 - Decision tree construction uses much more memory.
 - Well-suited for problems with little training data
 - Little performance gain when training data is really large.
You Can Try It At Home...

- Free implementations available
 - Original RF implementation by Breiman & Cutler
 - Papers, documentation, and code...
 - ...in Fortran 77.
 - But also newer version available in Fortran 90!
 - Fast Random Forest implementation for Java (Weka)

Topics of This Lecture

• Decision Trees
 ➢ CART
 ➢ Impurity measures, Stopping criterion, Pruning
 ➢ Extensions, Issues
 ➢ Historical development: ID3, C4.5

• Randomized Decision Trees
 ➢ Randomized attribute selection

• Random Forests
 ➢ Bootstrap sampling
 ➢ Ensemble of randomized trees
 ➢ Posterior sum combination
 ➢ Analysis

• **Extremely randomized trees**
 ➢ Random attribute selection
A Case Study in Deconstructivism...

• What we’ve done so far
 - Take the original decision tree idea.
 - Throw out all the complicated bits (pruning, etc.).
 - Learn on random subset of training data (bootstrapping/bagging).
 - Select splits based on random choice of candidate queries.
 - So as to maximize information gain.
 - Complexity: $O(KN^2 \log N)$

\Rightarrow Ensemble of weaker classifiers.

• How can we further simplify that?
 - Main effort still comes from selecting the optimal split (from reduced set of options)...
 - Simply choose a random query at each node.
 - Complexity: $O(N)$

\Rightarrow Extremely randomized decision trees
Extremely Randomized Decision Trees

- Random queries at each node...
 - Tree gradually develops from a classifier to a flexible container structure.
 - Node queries define (randomly selected) structure.
 - Each leaf node stores posterior probabilities

- Learning
 - Patches are “dropped down” the trees.
 - Only pairwise pixel comparisons at each node.
 - Directly update posterior distributions at leaves
 \(\Rightarrow\) Very fast procedure, only few pixel-wise comparisons
 \(\Rightarrow\) No need to store the original patches!
Performance Comparison

• Results
 - Almost equal performance for random tests when a sufficient number of trees is available (and much faster to train!).

B. Leibe
Application: Keypoint Matching
Application: Mobile Augmented Reality

Mobile Phone Augmented Reality

at
30 Frames per Second
using
Natural Feature Tracking
(all processing and rendering done in software)

D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, D. Schmalstieg,
Pose Tracking from Natural Features on Mobile Phones. In ISMAR 2008.
Practical Issues - Selecting the Tests

• For a small number of classes
 - We can try several tests.
 - Retain the best one according to some criterion.
 - E.g. entropy, Gini

• When the number of classes is large
 - Any test does a decent job.
Summary

• We started from full decision trees...
 - Successively simplified the classifiers...

• ...and ended up with very simple randomized versions
 - Ensemble methods: Combination of many simple classifiers
 - Good overall performance
 - Very fast to train and to evaluate

• Common limitations of Randomized Trees and Ferns?
 - Need large amounts of training data!
 - In order to fill the many probability distributions at the leaves.
 - Memory consumption!
 - Linear in the number of trees.
 - Exponential in the tree depth.
 - Linear in the number of classes (histogram at each leaf!)
References and Further Reading

• Very recent topics, not covered sufficiently well in books yet...

• The original papers for Randomized Trees

• The original paper for Random Forests:

• The papers for Ferns:
 - D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, D. Schmalstieg, Pose Tracking from Natural Features on Mobile Phones. In *ISMAR 2008*.