Machine Learning - Lecture 15

Efficient MRF Inference with Graph Cuts

05.07.2012

Bastian Leibe
RWTH Aachen
http://www.mmp.rwth-aachen.de
leibe@umic.rwth-aachen.de
Announcements

• Last lecture next Tuesday: Repetition
 ➢ Summary of all topics in the lecture
 ➢ “Big picture” and current research directions
 ➢ Opportunity to ask questions

 Please use this opportunity and prepare questions!
Course Outline

• Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation

• Discriminative Approaches (5 weeks)
 - Linear Discriminant Functions
 - Statistical Learning Theory & SVMs
 - Ensemble Methods & Boosting
 - Decision Trees & Randomized Trees

• Generative Models (4 weeks)
 - Bayesian Networks
 - Markov Random Fields
 - Exact Inference
Recap: Junction Tree Algorithm

- Motivation
 - **Exact** inference on general graphs.
 - Works by turning the initial graph into a *junction tree* and then running a sum-product-like algorithm.
 - **Intractable** on graphs with large cliques.

- Main steps
 1. If starting from directed graph, first convert it to an undirected graph by *moralization*.
 2. Introduce additional links by *triangulation* in order to reduce the size of cycles.
 3. Find *cliques* of the moralized, triangulated graph.
 4. Construct a new graph from the *maximal cliques*.
 5. Remove minimal links to break cycles and get a *junction tree*.
 ⇒ Apply regular *message passing* to perform inference.
Recap: Junction Tree Example

• Without triangulation step
 ➢ The final graph will contain cycles that we cannot break without losing the running intersection property!
Recap: Junction Tree Example

- When applying the triangulation
 - Only small cycles remain that are easy to break.
 - Running intersection property is maintained.

Image source: J. Pearl, 1988
Recap: MRF Structure for Images

• Basic structure

- Observation model
 - How likely is it that node x_i has label L_i given observation y_i?
 - This relationship is usually learned from training data.

- Neighborhood relations
 - Simplest case: 4-neighborhood
 - Serve as smoothing terms.
 - Discourage neighboring pixels to have different labels.
 - This can either be learned or be set to fixed “penalties”.

Noisy observations

“True” image content

B. Leibe
Recap: How to Set the Potentials?

• Unary potentials
 - E.g. color model, modeled with a Mixture of Gaussians
 \[
 \phi(x_i, y_i; \theta_\phi) = \log \sum_k \theta_\phi(x_i, k) p(k|x_i) \mathcal{N}(y_i; \bar{y}_k, \Sigma_k)
 \]

 ⇒ Learn color distributions for each label
Recap: How to Set the Potentials?

- **Pairwise potentials**
 - Potts Model
 \[\psi(x_i, x_j; \theta) = \theta \delta(x_i \neq x_j) \]
 - Simplest discontinuity preserving model.
 - Discontinuities between any pair of labels are penalized equally.
 - Useful when labels are unordered or number of labels is small.

- **Extension: “contrast sensitive Potts model”**
 \[\psi(x_i, x_j, g_{ij}(y); \theta) = \theta g_{ij}(y) \delta(x_i \neq x_j) \]
 where
 \[g_{ij}(y) = e^{-\beta \| y_i - y_j \|^2} \]
 \[\beta = 2 / \text{avg} \left(\| y_i - y_j \|^2 \right) \]
 - Discourages label changes except in places where there is also a large change in the observations.
Energy Minimization

• **Goal:**
 - Infer the optimal labeling of the MRF.

• **Many inference algorithms are available, e.g.**
 - Simulated annealing
 - Iterated conditional modes (ICM)
 - Belief propagation
 - Graph cuts
 - Variational methods
 - Monte Carlo sampling

• **Recently, Graph Cuts have become a popular tool**
 - Only suitable for a certain class of energy functions.
 - But the solution can be obtained very fast for typical vision problems (~1MPixel/sec).

\[\Phi(x_i, y_i) \]
\[\Theta(x_j, x_k) \]
Topics of This Lecture

• Solving MRFs with Graph Cuts
 - Graph cuts for image segmentation
 - s-t mincut algorithm
 - Extension to non-binary case
 - Applications
Graph Cuts for Binary Problems

- Idea: convert MRF into source-sink graph

Minimum cost cut can be computed in polynomial time (max-flow/min-cut algorithms)

Minimum cost cut can be computed in polynomial time (max-flow/min-cut algorithms)

\[w_{pq} = \exp \left\{ -\frac{\Delta I_{pq}}{2\sigma^2} \right\} \]

[Boykov & Jolly, ICCV’01]
Simple Example of Energy

\[E(L) = \sum_p D_p(L_p) + \sum_{pq \in N} w_{pq} \cdot \delta(L_p \neq L_q) \]

- **t-links**
 - unary potentials

- **n-links**
 - pairwise potentials

\[w_{pq} = \exp \left\{ -\frac{\Delta I_{pq}}{2\sigma^2} \right\} \]

- \(L_p \in \{s, t\} \)

(binary object segmentation)

Slide credit: Yuri Boykov
Adding Regional Properties

Regional bias example

Suppose I^s and I^t are given “expected” intensities of object and background

\[
D_p(t) \propto \exp \left(-\|I_p - I^s\|^2 / 2\sigma^2 \right)
\]

\[
D_p(s) \propto \exp \left(-\|I_p - I^t\|^2 / 2\sigma^2 \right)
\]

NOTE: hard constrains are not required, in general.

[Boykov & Jolly, ICCV’01]
Adding Regional Properties

“expected” intensities of object and background I^s and I^t can be re-estimated.

$D_p(t) \propto \exp \left(-\| I_p - I^t \|^2 / 2\sigma^2 \right)$

$D_p(s) \propto \exp \left(-\| I_p - I^s \|^2 / 2\sigma^2 \right)$

EM-style optimization

[Boykov & Jolly, ICCV’01]
Adding Regional Properties

• More generally, unary potentials can be based on any intensity/color models of object and background.

\[D_p(L_p) = - \log p(I_p|L_p) \]

Object and background color distributions

Slide credit: Yuri Boykov

[Boykov & Jolly, ICCV’01]
Topics of This Lecture

• Solving MRFs with Graph Cuts
 - Graph cuts for image segmentation
 - s-t mincut algorithm
 - Extension to non-binary case
 - Applications
How Does it Work? The s-t-Mincut Problem

Graph (V, E, C)

Vertices V = \{v_1, v_2 \ldots v_n\}

Edges E = \{(v_1, v_2) \ldots\}

Costs C = \{c_{(1, 2)} \ldots\}
The s-t-Mincut Problem

What is an st-cut?

An st-cut \((S,T)\) divides the nodes between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges going from \(S\) to \(T\)

\[5 + 2 + 9 = 16\]
The s-t-Mincut Problem

What is an s-t-cut?
An s-t-cut \((S,T)\) divides the nodes between source and sink.

What is the cost of an s-t-cut?
Sum of cost of all edges going from \(S\) to \(T\)

What is the s-t-mincut?
st-cut with the minimum cost

\[
2 + 1 + 4 = 7
\]
How to Compute the s-t-Mincut?

Solve the dual maximum flow problem

Compute the maximum flow between Source and Sink

Constraints
Edges: Flow < Capacity
Nodes: Flow in = Flow out

Min-cut/Max-flow Theorem
In every network, the maximum flow equals the cost of the s-t-mincut

Slide credit: Pushmeet Kohli
History of Maxflow Algorithms

Augmenting Path and Push-Relabel

<table>
<thead>
<tr>
<th>year</th>
<th>discoverer(s)</th>
<th>bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951</td>
<td>Dantzig</td>
<td>(O(n^2 m U))</td>
</tr>
<tr>
<td>1955</td>
<td>Ford & Fulkerson</td>
<td>(O(m^2 U))</td>
</tr>
<tr>
<td>1970</td>
<td>Dinitz</td>
<td>(O(n^2 m))</td>
</tr>
<tr>
<td>1972</td>
<td>Edmonds & Karp</td>
<td>(O(m^2 \log U))</td>
</tr>
<tr>
<td>1973</td>
<td>Dinitz</td>
<td>(O(nm \log U))</td>
</tr>
<tr>
<td>1974</td>
<td>Karzanov</td>
<td>(O(n^3))</td>
</tr>
<tr>
<td>1977</td>
<td>Cherkassky</td>
<td>(O(n^2 m^{1/2}))</td>
</tr>
<tr>
<td>1980</td>
<td>Galil & Naamad</td>
<td>(O(nm \log^2 n))</td>
</tr>
<tr>
<td>1983</td>
<td>Sleator & Tarjan</td>
<td>(O(nm \log n))</td>
</tr>
<tr>
<td>1986</td>
<td>Goldberg & Tarjan</td>
<td>(O(nm \log(n^2/m)))</td>
</tr>
<tr>
<td>1987</td>
<td>Ahuja & Orlin</td>
<td>(O(nm + n^2 \log U))</td>
</tr>
<tr>
<td>1987</td>
<td>Ahuja et al.</td>
<td>(O(nm \log(n \sqrt{\log U/m})))</td>
</tr>
<tr>
<td>1989</td>
<td>Cheriyan & Hagerup</td>
<td>(E(nm + n^2 \log^2 n))</td>
</tr>
<tr>
<td>1990</td>
<td>Cheriyan et al.</td>
<td>(O(n^3/ \log n))</td>
</tr>
<tr>
<td>1990</td>
<td>Alon</td>
<td>(O(nm + n^{8/3} \log n))</td>
</tr>
<tr>
<td>1992</td>
<td>King et al.</td>
<td>(O(nm + n^{2+\epsilon}))</td>
</tr>
<tr>
<td>1993</td>
<td>Phillips & Westbrook</td>
<td>(O(nm(\log_{m/n} n + \log^{2+\epsilon} n)))</td>
</tr>
<tr>
<td>1994</td>
<td>King et al.</td>
<td>(O(nm \log_{m/(n \log n)} n))</td>
</tr>
<tr>
<td>1997</td>
<td>Goldberg & Rao</td>
<td>(O(m^{3/2} \log(n^2/m) \log U))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(O(n^{2/3} m \log(n^2/m) \log U))</td>
</tr>
</tbody>
</table>

\(n\): \#nodes
\(m\): \#edges
\(U\): maximum edge weight

Algorithms assume non-negative edge weights

Slide credit: Andrew Goldberg

B. Leibe
Maxflow Algorithms

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Algorithms assume non-negative capacity

Slide credit: Pushmeet Kohli
Maxflow Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Algorithms assume non-negative capacity

Slide credit: Pushmeet Kohli
Maxflow Algorithms

Flow = 0 + 2

Source

\[2 - 2 \]
\[1 \]
\[9 \]
\[2 \]
\[4 \]
\[5 - 2 \]

Sink

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Algorithms assume non-negative capacity

Slide credit: Pushmeet Kohli
Maxflow Algorithms

Flow = 2

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Algorithms assume non-negative capacity

Slide credit: Pushmeet Kohli
Maxflow Algorithms

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Flow = 2

Source
v₁
0
1
3
4
v₂
9
2
Sink

Algorithms assume non-negative capacity

Slide credit: Pushmeet Kohli
Maxflow Algorithms

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Algorithms assume non-negative capacity

Slide credit: Pushmeet Kohli
Maxflow Algorithms

Flow = 2 + 4

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Algorithms assume non-negative capacity

Slide credit: Pushmeet Kohli
Maxflow Algorithms

Flow = 6

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Algorithms assume non-negative capacity

Slide credit: Pushmeet Kohli
Maxflow Algorithms

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Algorithms assume non-negative capacity

Flow = 6

Slide credit: Pushmeet Kohli
Maxflow Algorithms

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Algorithms assume non-negative capacity
Maxflow Algorithms

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Algorithms assume non-negative capacity
Maxflow Algorithms

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Algorithms assume non-negative capacity
Applications: Maxflow in Computer Vision

- Specialized algorithms for vision problems
 - Grid graphs
 - Low connectivity ($m \sim O(n)$)

- Dual search tree augmenting path algorithm
 [Boykov and Kolmogorov PAMI 2004]
 - Finds approximate shortest augmenting paths efficiently.
 - High worst-case time complexity.
 - Empirically outperforms other algorithms on vision problems.
 - Efficient code available on the web
 http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html
When Can s-t Graph Cuts Be Applied?

\[E(L) = \sum_{p} E_p(L_p) + \sum_{pq \in N} E(L_p, L_q) \]

• s-t graph cuts can only globally minimize binary energies that are submodular.

\[E(s,s) + E(t,t) \leq E(s,t) + E(t,s) \]

Submodularity ("convexity")

• Submodularity is the discrete equivalent to convexity.
 - Implies that every local energy minimum is a global minimum.
 - \(\Rightarrow \) Solution will be globally optimal.
Recap: Simple Binary Image Denoising Model

- **MRF Structure**

 Observation process

 ![Diagram](image.png)

 "Smoothness constraints"

 - Example: simple energy function

 $E(x, y) = h \sum_i x_i + \beta \sum_{\{i, j\}} \delta(x_i \neq x_j) - \eta \sum_i x_i y_i$

 - Prior
 - Smoothness ("Potts model")
 - Observation

 - Smoothness term: fixed penalty β if neighboring labels disagree.
 - Observation term: fixed penalty η if label and observation disagree.

"True" image content

Noisy observations

$x_i, y_i \in \{-1, 1\}$

Image source: C. Bishop, 2006
Converting an MRF into an s-t Graph

• Conversion:

• Energy:

\[E(x, y) = h \sum_i x_i + \beta \sum_{\{i,j\}} \delta(x_i \neq x_j) - \eta \sum_i x_i y_i \]

- **Unary potentials** are straightforward to set.
 - How?
 - Just insert \(x_i = 1 \) and \(x_i = -1 \) into the unary terms above…
Converting an MRF into an s-t Graph

- **Conversion:**

- **Energy:**

 \[E(x, y) = h \sum_i x_i + \beta \sum_{\{i,j\}} \delta(x_i \neq x_j) - \eta \sum_i x_i y_i \]

 - **Unary potentials** are straightforward to set. How?
 - **Pairwise potentials** are more tricky, since we don’t know \(x_i \)!
 - Trick: the pairwise energy only has an influence if \(x_i \neq x_j \).
 - (Only!) in this case, the cut will go through the edge \(\{x_i, x_j\} \).

\[L_i = -1 \]

\[L_i = 1 \]
Topics of This Lecture

• Solving MRFs with Graph Cuts
 - Graph cuts for image segmentation
 - s-t mincut algorithm
 - Extension to non-binary case
 - Applications
Dealing with Non-Binary Cases

• Limitation to binary energies is often a nuisance.
 ⇒ E.g. binary segmentation only...

• We would like to solve also multi-label problems.
 ➢ The bad news: Problem is NP-hard with 3 or more labels!

• There exist some approximation algorithms which extend graph cuts to the multi-label case:
 ➢ α-Expansion
 ➢ $\alpha\beta$-Swap

• They are no longer guaranteed to return the globally optimal result.
 ➢ But α-Expansion has a guaranteed approximation quality (2-approx) and converges in a few iterations.
α-Expansion Move

- **Basic idea:**
 - Break multi-way cut computation into a sequence of binary s-t cuts.

Slide credit: Yuri Boykov
α-Expansion Algorithm

1. Start with any initial solution
2. For each label “α” in any (e.g. random) order:
 1. Compute optimal α-expansion move (s-t graph cuts).
 2. Decline the move if there is no energy decrease.
3. Stop when no expansion move would decrease energy.
Example: Stereo Vision

Original pair of “stereo” images

Depth map

ground truth

Slide credit: Yuri Boykov
\(\alpha \)-Expansion Moves

- In each \(\alpha \)-expansion a given label “\(\alpha \)” grabs space from other labels

For each move, we choose the expansion that gives the largest decrease in the energy: \(\Rightarrow \) binary optimization problem

Slide credit: Yuri Boykov
Topics of This Lecture

- Solving MRFs with Graph Cuts
 - Graph cuts for image segmentation
 - s-t mincut algorithm
 - Extension to non-binary case
 - Applications
GraphCut Applications: “GrabCut”

- **Interactive Image Segmentation [Boykov & Jolly, ICCV’01]**
 - Rough region cues sufficient
 - Segmentation boundary can be extracted from edges

- **Procedure**
 - User marks foreground and background regions with a brush.
 - This is used to create an initial segmentation which can then be corrected by additional brush strokes.

User segmentation cues

Additional segmentation cues
GrabCut: Data Model

- Obtained from interactive user input
 - User marks foreground and background regions with a brush
 - Alternatively, user can specify a bounding box

Global optimum of the energy

Slide credit: Carsten Rother

B. Leibe
Iterated Graph Cuts

Result

Energy after each iteration

Color model (Mixture of Gaussians)

Slide credit: Carsten Rother
GrabCut: Example Results

- This is included in the newest version of MS Office!

Image source: Carsten Rother
Applications: Interactive 3D Segmentation
References and Further Reading

- A gentle introduction to Graph Cuts can be found in the following paper:

- Try the GraphCut implementation at
 http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html