Machine Learning - Lecture 4

Mixture Models and EM

31.10.2013

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

Many slides adapted from B. Schiele
Announcements

• Exercise 1 available
 - Bayes decision theory
 - Maximum Likelihood
 - Kernel density estimation / k-NN
 - Gaussian Mixture Models
 ⇒ Submit your results to Ishrat until evening of 10.11.

• Exercise modalities
 - Please form teams of up to 3 people!
 - Make it easy for Ishrat to correct your solutions:
 - Turn in everything as a single zip archive.
 - Use the provided Matlab framework.
 - For each exercise, you need to implement the corresponding apply function. If the screen output matches the expected output, you will get the points for the exercise; else, no points.
Course Outline

- Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation

- Discriminative Approaches (5 weeks)
 - Linear Discriminant Functions
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns

- Generative Models (4 weeks)
 - Bayesian Networks
 - Markov Random Fields
Recap: Bayesian Learning Approach

- **Bayesian view:**
 - Consider the parameter vector θ as a random variable.
 - When estimating the parameters, what we compute is

$$p(x|X) = \int p(x, \theta|X) d\theta$$

This is entirely determined by the parameter θ (i.e. by the parametric form of the pdf).

\[p(x, \theta|X) = p(x|\theta, X)p(\theta|X)\]

Assumption: given θ, this doesn’t depend on X anymore
Recap: Bayesian Learning Approach

- Discussion

The more uncertain we are about θ, the more we average over all possible parameter values.

\[
p(x|X) = \int \frac{p(x|\theta)L(\theta)p(\theta)}{\int L(\theta)p(\theta) d\theta} d\theta
\]

Likelihood of the parametric form θ given the data set X.

Estimate for x based on parametric form θ.

Prior for the parameters θ.

Normalization: integrate over all possible values of θ.

B. Leibe
Recap: Histograms

- Basic idea:
 - Partition the data space into distinct bins with widths Δ_i and count the number of observations, n_i, in each bin.
 - Often, the same width is used for all bins, $\Delta_i = \Delta$.
 - This can be done, in principle, for any dimensionality D.

$$p_i = \frac{n_i}{N \Delta_i}$$

...but the required number of bins grows exponentially with D!
Recap: Kernel Density Estimation

- Approximation formula:
 \[p(x) \approx \frac{K}{NV} \]

- Kernel methods
 - Place a *kernel window* \(k \) at location \(x \) and count how many data points fall inside it.

- K-Nearest Neighbor
 - Increase the volume \(V \) until the \(K \) next data points are found.

Slide adapted from Bernt Schiele
Topics of This Lecture

• Mixture distributions
 - Mixture of Gaussians (MoG)
 - Maximum Likelihood estimation attempt

• K-Means Clustering
 - Algorithm
 - Applications

• EM Algorithm
 - Credit assignment problem
 - MoG estimation
 - EM Algorithm
 - Interpretation of K-Means
 - Technical advice

• Applications
Mixture Distributions

- A single parametric distribution is often not sufficient
 - E.g. for multimodal data

Image source: C.M. Bishop, 2006
Mixture of Gaussians (MoG)

- Sum of M individual Normal distributions

$$f(x) = \sum_{j=1}^{M} p(x | \theta_j) p(j)$$

- In the limit, every smooth distribution can be approximated this way (if M is large enough)
Mixture of Gaussians

\[
p(x|\theta) = \sum_{j=1}^{M} p(x|\theta_j)p(j)
\]

\[
p(x|\theta_j) = \mathcal{N}(x|\mu_j, \sigma_j^2) = \frac{1}{\sqrt{2\pi\sigma_j}} \exp \left\{ -\frac{(x - \mu_j)^2}{2\sigma_j^2} \right\}
\]

\[
p(j) = \pi_j \quad \text{with} \quad 0 \cdot \pi_j \cdot 1 \quad \text{and} \quad \sum_{j=1}^{M} \pi_j = 1.
\]

• Notes

 ➢ The mixture density integrates to 1: \(\int p(x)dx = 1 \)

 ➢ The mixture parameters are \(\theta = (\pi_1, \mu_1, \sigma_1, \ldots, \pi_M, \mu_M, \sigma_M) \)

Likelihood of measurement \(x \) given mixture component \(j \)

Prior of component \(j \)
Mixture of Gaussians (MoG)

- “Generative model”

\[
p(j) = \pi_j
\]

\[
p(x|\theta_j)
\]

\[
p(x|\theta) = \sum_{j=1}^{M} p(x|\theta_j)p(j)
\]

“Weight” of mixture component

Mixture component

Mixture density

Slide credit: Bernt Schiele
Mixture of Multivariate Gaussians
Mixture of Multivariate Gaussians

- **Multivariate Gaussians**

\[
p(x|\theta) = \sum_{j=1}^{M} p(x|\theta_j)p(j)
\]

\[
p(x|\theta_j) = \frac{1}{(2\pi)^{D/2}|\Sigma_j|^{1/2}} \exp \left\{ -\frac{1}{2}(x - \mu_j)^T \Sigma_j^{-1}(x - \mu_j) \right\}
\]

- Mixture weights / mixture coefficients:

\[
p(j) = \pi_j \text{ with } 0 < \pi_j < 1 \text{ and } \sum_{j=1}^{M} \pi_j = 1
\]

- Parameters:

\[
\theta = (\pi_1, \mu_1, \Sigma_1, \ldots, \pi_M, \mu_M, \Sigma_M)
\]
Mixture of Multivariate Gaussians

• “Generative model”

\[p(j) = \pi_j \]

\[p(x|\theta) = \sum_{j=1}^{3} \pi_j p(x|\theta_j) \]

Slide credit: Bernt Schiele

Image source: C.M. Bishop, 2006
Mixture of Gaussians - 1st Estimation Attempt

• Maximum Likelihood
 - Minimize $E = -\ln L(\theta) = -\sum_{n=1}^{N} \ln p(x_n|\theta)$
 - Let's first look at μ_j:
 $$\frac{\partial E}{\partial \mu_j} = 0$$
 - We can already see that this will be difficult, since
 $$\ln p(X|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(x_n|\mu_k, \Sigma_k) \right\}$$
 This will cause problems!
Mixture of Gaussians - 1st Estimation Attempt

• **Minimization:**

\[
\frac{\partial E}{\partial \mu_j} = - \sum_{n=1}^{N} \frac{\frac{\partial}{\partial \mu_j} p(x_n | \theta_j)}{\sum_{k=1}^{K} p(x_n | \theta_k)}
\]

\[
= - \sum_{n=1}^{N} \left(\Sigma^{-1}(x_n - \mu_j) \frac{p(x_n | \theta_j)}{\sum_{k=1}^{K} p(x_n | \theta_k)} \right)
\]

\[
= - \Sigma^{-1} \sum_{n=1}^{N} (x_n - \mu_j) \frac{\pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)}{\sum_{k=1}^{K} \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}
\]

\[
\Rightarrow \mu_j = \frac{\sum_{n=1}^{N} \gamma_j(x_n)x_n}{\sum_{n=1}^{N} \gamma_j(x_n)}
\]

“responsibility” of component \(j \) for \(x_n \)

\[
\frac{\partial}{\partial \mu_j} \mathcal{N}(x_n | \mu_k, \Sigma_k) = \Sigma^{-1}(x_n - \mu_j) \mathcal{N}(x_n | \mu_k, \Sigma_k)
\]
Mixture of Gaussians - 1st Estimation Attempt

- But...

\[\mu_j = \frac{\sum_{n=1}^{N} \gamma_j(x_n) x_n}{\sum_{n=1}^{N} \gamma_j(x_n)} \]

\[\gamma_j(x_n) = \frac{\pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)}{\sum_{k=1}^{N} \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)} \]

- I.e. there is no direct analytical solution!

\[\frac{\partial E}{\partial \mu_j} = f (\pi_1, \mu_1, \Sigma_1, \ldots, \pi_M, \mu_M, \Sigma_M) \]

- Complex gradient function (non-linear mutual dependencies)
- Optimization of one Gaussian depends on all other Gaussians!
- It is possible to apply iterative numerical optimization here, but in the following, we will see a simpler method.
Mixture of Gaussians - Other Strategy

- Other strategy:

- Observed data:
- Unobserved data:
 - Unobserved = “hidden variable”: \(j|x \)

\[
\begin{align*}
 h(j = 1|x_n) &= 1 111 000 000 \\
 h(j = 2|x_n) &= 0 000 111 111
\end{align*}
\]
Mixture of Gaussians - Other Strategy

- Assuming we knew the values of the hidden variable...

\[f(x) \]

\[x \]

ML for Gaussian #1

assumed known \[\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
\end{array} \]

\[h(j = 1 | x_n) = \begin{array}{c}
1 \\
1 \\
1 \\
1 \\
\end{array} \]

\[h(j = 2 | x_n) = \begin{array}{c}
0 \\
0 \\
0 \\
0 \\
\end{array} \]

\[\mu_1 = \frac{\sum_{n=1}^{N} h(j = 1 | x_n) x_n}{\sum_{i=1}^{N} h(j = 1 | x_n)} \]

ML for Gaussian #2

\[\begin{array}{c}
22 \\
2 \\
2 \\
\end{array} \]

\[h(j = 2 | x_n) = \begin{array}{c}
11 \\
1 \\
1 \\
\end{array} \]

\[\mu_2 = \frac{\sum_{n=1}^{N} h(j = 2 | x_n) x_n}{\sum_{i=1}^{N} h(j = 2 | x_n)} \]

Slide credit: Bernt Schiele
Mixture of Gaussians - Other Strategy

- Assuming we knew the mixture components...

 \[f(x) \]

 \[p(j = 1|x) \]

 \[p(j = 2|x) \]

 \[\text{assumed known} \]

- Bayes decision rule: Decide \(j = 1 \) if

 \[p(j = 1|x_n) > p(j = 2|x_n) \]
Mixture of Gaussians - Other Strategy

• Chicken and egg problem - what comes first?

We don’t know any of those!

• In order to break the loop, we need an estimate for j.
 ➢ E.g. by clustering...
Clustering with Hard Assignments

• Let’s first look at clustering with “hard assignments”

\[f(x) \]

\[x \]

1 111 22 2 2
Topics of This Lecture

• Mixture distributions
 - Mixture of Gaussians (MoG)
 - Maximum Likelihood estimation attempt

• K-Means Clustering
 - Algorithm
 - Applications

• EM Algorithm
 - Credit assignment problem
 - MoG estimation
 - EM Algorithm
 - Interpretation of K-Means
 - Technical advice

• Applications
K-Means Clustering

- Iterative procedure
 1. Initialization: pick K arbitrary centroids (cluster means)
 2. Assign each sample to the closest centroid.
 3. Adjust the centroids to be the means of the samples assigned to them.
 4. Go to step 2 (until no change)

- Algorithm is guaranteed to converge after finite #iterations.
 - Local optimum
 - Final result depends on initialization.

Slide credit: Bernt Schiele
K-Means - Example with K=2

Image source: C.M. Bishop, 2006
K-Means Clustering

- K-Means optimizes the following objective function:

\[
J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2
\]

- where

\[
r_{nk} = \begin{cases}
1 & \text{if } k = \arg \min_j ||x_n - \mu_j||^2 \\
0 & \text{otherwise.}
\end{cases}
\]

- In practice, this procedure usually converges quickly to a local optimum.
Example Application: Image Compression

Take each pixel as one data point.

Set the pixel color to the cluster mean.

K-Means Clustering

Image source: C.M. Bishop, 2006
Example Application: Image Compression

\(K = 2 \) \hspace{2cm} \(K = 3 \) \hspace{2cm} \(K = 10 \) \hspace{2cm} Original image

\(K = 2 \ preserving only two eigenvalues.\)

\(K = 3 \ preserving three eigenvalues.\)

\(K = 10 \ preserving ten eigenvalues.\)

Image source: C.M. Bishop, 2006
Summary K-Means

• **Pros**
 - Simple, fast to compute
 - Converges to local minimum of within-cluster squared error

• **Problem cases**
 - Setting k?
 - Sensitive to initial centers
 - Sensitive to outliers
 - Detects spherical clusters only

• **Extensions**
 - Speed-ups possible through efficient search structures
 - General distance measures: k-medoids

Slide credit: Kristen Grauman
Topics of This Lecture

• Mixture distributions
 - Mixture of Gaussians (MoG)
 - Maximum Likelihood estimation attempt

• K-Means Clustering
 - Algorithm
 - Applications

• **EM Algorithm**
 - Credit assignment problem
 - MoG estimation
 - EM Algorithm
 - Interpretation of K-Means
 - Technical advice

• Applications
Credit Assignment Problem

• “Credit Assignment Problem”
 - If we are just given \(x \), we don’t know which mixture component
 this example came from
 \[
 p(x | \theta) = \sum_{j=1}^{2} \pi_j p(x | \theta_j)
 \]
 - We can however evaluate the posterior probability that an
 observed \(x \) was generated from the first mixture component.

 \[
 p(j = 1 | x, \theta) = \frac{p(j = 1, x | \theta)}{p(x | \theta)}
 \]

 \[
 p(j = 1, x | \theta) = p(x | j = 1, \theta)p(j = 1) = p(x | \theta_1)p(j = 1)
 \]

 \[
 p(j = 1 | x, \theta) = \frac{p(x | \theta_1)p(j = 1)}{\sum_{j=1}^{2} p(x | \theta_j)p(j)}
 \]
Mixture Density Estimation Example

- **Example**
 - Assume we want to estimate a 2-component MoG model

 $$p(x|\theta) = \sum_{j=1}^{2} \pi_j p(x|\theta_j)$$

 $$= \pi_1 p(x|\mu_1, \Sigma_1) + \pi_2 p(x|\mu_2, \Sigma_2)$$

 - If each sample in the training set were labeled $j \in \{1, 2\}$ according to which mixture component (1 or 2) had generated it, then the estimation would be easy.
 - Labeled examples = no credit assignment problem.

Slide credit: Bernt Schiele
Mixture Density Estimation Example

• When examples are labeled, we can estimate the Gaussians independently
 – Using Maximum Likelihood estimation for single Gaussians.

• Notation
 – Let \(l_i \) be the label for sample \(x_i \)
 – Let \(N \) be the number of samples
 – Let \(N_j \) be the number of samples labeled \(j \)
 – Then for each \(j \in \{1, 2\} \) we set

\[
\hat{\pi}_j \leftarrow \frac{\hat{N}_j}{N}
\]

\[
\hat{\mu}_j \leftarrow \frac{1}{\hat{N}_j} \sum_{i: l_i = j} x_i
\]

\[
\hat{\Sigma}_j \leftarrow \frac{1}{\hat{N}_j} \sum_{i: l_i = j} (x_i - \hat{\mu}_j)(x_i - \hat{\mu}_j)^T
\]

Slide credit: Bernt Schiele
Mixture Density Estimation Example

- Of course, we don’t have such labels \(l_i \)...
 - But we can guess what the labels might be based on our current mixture distribution estimate (credit assignment problem).
 - We get soft labels or posterior probabilities of which Gaussian generated which example:

\[
\gamma_j(x_i) = p(l_i = j|x_i, \theta) \sum_{j=1}^{2} \gamma_j(x_i) = 1 \quad \forall i = 1, \ldots, N
\]

- When the Gaussians are almost identical (as in the figure), then \(\gamma_1(x_i) \approx \gamma_2(x_i) \) for almost any given sample \(x_i \).
 - Even small differences can help to determine how to update the Gaussians.

Slide credit: Bernt Schiele
EM Algorithm

- **Expectation-Maximization (EM) Algorithm**
 - **E-Step:** softly assign samples to mixture components
 \[
 \gamma_j(x_n) \leftarrow \frac{\pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)}{\sum_{k=1}^{N} \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)} \quad \forall j = 1, \ldots, K, \quad n = 1, \ldots, N
 \]
 - **M-Step:** re-estimate the parameters (separately for each mixture component) based on the soft assignments
 \[
 \hat{N}_j \leftarrow \sum_{n=1}^{N} \gamma_j(x_n) = \text{soft number of samples labeled } j
 \]
 \[
 \hat{\pi}_j^{\text{new}} \leftarrow \frac{\hat{N}_j}{N}
 \]
 \[
 \hat{\mu}_j^{\text{new}} \leftarrow \frac{1}{\hat{N}_j} \sum_{n=1}^{N} \gamma_j(x_n) x_n
 \]
 \[
 \hat{\Sigma}_j^{\text{new}} \leftarrow \frac{1}{\hat{N}_j} \sum_{n=1}^{N} \gamma_j(x_n)(x_n - \hat{\mu}_j^{\text{new}})(x_n - \hat{\mu}_j^{\text{new}})^T
 \]
EM Algorithm - An Example

Image source: C.M. Bishop, 2006
EM - Technical Advice

- When implementing EM, we need to take care to avoid singularities in the estimation!
 - Mixture components may collapse on single data points.
 - E.g. consider the case $\Sigma_k = \sigma_k^2 I$ (this also holds in general)
 - Assume component j is exactly centered on data point x_n. This data point will then contribute a term in the likelihood function
 \[
 \mathcal{N}(x_n | x_n, \sigma_j^2 I) = \frac{1}{\sqrt{2\pi} \sigma_j} \]
 - For $\sigma_j \to 0$, this term goes to infinity!

⇒ Need to introduce regularization
 - Enforce minimum width for the Gaussians
 - E.g., instead of Σ^{-1}, use $(\Sigma + \sigma_{\min} I)^{-1}$
EM - Technical Advice (2)

• EM is very sensitive to the initialization
 ➢ Will converge to a local optimum of E.
 ➢ Convergence is relatively slow.

⇒ Initialize with k-Means to get better results!
 ➢ k-Means is itself initialized randomly, will also only find a local optimum.
 ➢ But convergence is much faster.

• Typical procedure
 ➢ Run k-Means M times (e.g. $M = 10\text{-}100$).
 ➢ Pick the best result (lowest error J).
 ➢ Use this result to initialize EM
 - Set μ_j to the corresponding cluster mean from k-Means.
 - Initialize Σ_j to the sample covariance of the associated data points.
K-Means Clustering Revisited

- Interpreting the procedure
 1. Initialization: pick K arbitrary centroids (cluster means)
 2. Assign each sample to the closest centroid. (E-Step)
 3. Adjust the centroids to be the means of the samples assigned to them. (M-Step)
 4. Go to step 2 (until no change)
K-Means Clustering Revisited

- K-Means clustering essentially corresponds to a Gaussian Mixture Model (MoG or GMM) estimation with EM whenever
 - The covariances are of the K Gaussians are set to $\Sigma_j = \sigma^2 I$
 - For some small, fixed σ^2

Slide credit: Bernt Schiele
Summary: Gaussian Mixture Models

• Properties
 - Very general, can represent any (continuous) distribution.
 - Once trained, very fast to evaluate.
 - Can be updated online.

• Problems / Caveats
 - Some numerical issues in the implementation
 ⇒ Need to apply regularization in order to avoid singularities.
 - EM for MoG is computationally expensive
 - Especially for high-dimensional problems!
 - More computational overhead and slower convergence than k-Means
 - Results very sensitive to initialization
 ⇒ Run k-Means for some iterations as initialization!
 - Need to select the number of mixture components K.
 ⇒ Model selection problem (see Lecture 16)
Topics of This Lecture

• Mixture distributions
 - Mixture of Gaussians (MoG)
 - Maximum Likelihood estimation attempt

• K-Means Clustering
 - Algorithm
 - Applications

• EM Algorithm
 - Credit assignment problem
 - MoG estimation
 - EM Algorithm
 - Interpretation of K-Means
 - Technical advice

• Applications
Applications

• Mixture models are used in many practical applications.
 ➢ Wherever distributions with complex or unknown shapes need to be represented...

• Popular application in Computer Vision
 ➢ Model distributions of pixel colors.
 ➢ Each pixel is one data point in, e.g., RGB space.
 ⇒ Learn a MoG to represent the class-conditional densities.
 ⇒ Use the learned models to classify other pixels.

Image source: C.M. Bishop, 2006
Application: Background Model for Tracking

• Train background MoG for each pixel
 - Model “common“ appearance variation for each background pixel.
 - Initialization with an empty scene.
 - Update the mixtures over time
 - Adapt to lighting changes, etc.

• Used in many vision-based tracking applications
 - Anything that cannot be explained by the background model is labeled as foreground (=object).
 - Easy segmentation if camera is fixed.

Application: Image Segmentation

- **User assisted image segmentation**
 - User marks two regions for foreground and background.
 - Learn a MoG model for the color values in each region.
 - Use those models to classify all other pixels.

 ⇒ Simple segmentation procedure
 (building block for more complex applications)
Application: Color-Based Skin Detection

- Collect training samples for skin/non-skin pixels.
- Estimate MoG to represent the skin/non-skin densities.

M. Jones and J. Rehg, Statistical Color Models with Application to Skin Detection, IJCV 2002.

Classify skin color pixels in novel images.
Interested to Try It?

• Here’s how you can access a webcam in Matlab:

```matlab
function out = webcam
% uses "Image Acquisition Toolbox,"
adaptorName = 'winvideo';
vidFormat = 'I420_320x240';
vidObj1 = videoinput(adaptorName, 1, vidFormat);
set(vidObj1, 'ReturnedColorSpace', 'rgb');
set(vidObj1, 'FramesPerTrigger', 1);
out = vidObj1;

cam = webcam();
img = getsnapshot(cam);
```
References and Further Reading

• More information about EM and MoG estimation is available in Chapter 2.3.9 and the entire Chapter 9 of Bishop’s book (recommendable to read).

 Christopher M. Bishop
 Pattern Recognition and Machine Learning
 Springer, 2006

• Additional information
 - Original EM paper:
 - EM tutorial: