Recap: Linear Discriminant Functions

- Basic idea
 - Directly encode decision boundary
 - Minimize misclassification probability directly.

- Linear discriminant functions
 \(y(x) = w^T x + w_0 \)
 \(w, w_0 \) define a hyperplane in \(\mathbb{R}^d \).
 - If a data set can be perfectly classified by a linear discriminant, then we call it linearly separable.

Recap: Least-Squares Classification

- Simplest approach
 - Directly try to minimize the sum-of-squares error
 \[E(w) = \sum_{n=1}^{N} (y(x_n; w) - t_n)^2 \]
 \[E_D(W) = \frac{1}{2} \text{Tr} \left\{ (XW - T)(XW - T)^T \right\} \]
 - Setting the derivative to zero yields
 \[W = (X^T X)^{-1} X^T T = X^T X^{-1} X^T = X^T X^{-1} \]
 - We then obtain the discriminant function as
 \[y(x) = W^T x = T^T \frac{1}{2} x \]
 \(\Rightarrow \) Exact, closed-form solution for the discriminant function parameters.

Recap: Problems with Least Squares

- Least-squares is very sensitive to outliers!
 - The error function penalizes predictions that are “too correct”.

Recap: Generalized Linear Models

- Generalized linear model
 \[y(x) = g(w^T x + w_0) \]
 - \(g(\cdot) \) is called an activation function and may be nonlinear.
 - The decision surfaces correspond to
 \[y(x) = \text{const.} \iff w^T x + w_0 = \text{const.} \]
 - If \(g \) is monotonous (which is typically the case), the resulting decision boundaries are still linear functions of \(x \).

- Advantages of the non-linearity
 - Can be used to bound the influence of outliers and “too correct” data points.
 - When using a sigmoid for \(g(\cdot) \), we can interpret \(y(x) \) as posterior probabilities.
Recap: Linear Separability

- Up to now: restrictive assumption
 - Only consider linear decision boundaries
- Classical counterexample: XOR

\[
\begin{array}{c|cc}
\times_1 & C_2 & C_1 \\
\hline
C_1 & \bullet & \cdot \\
C_2 & \cdot & \cdot \\
\end{array}
\]

Recap: Extension to Nonlinear Basis Fcts.

- Generalization
 - Transform vector \(x \) with \(M \) nonlinear basis functions \(\phi_j(x) \):
 \[
y_k(x) = \sum_{j=1}^{M} w_{kj} \phi_j(x) + w_{k0}
 \]
- Advantages
 - Transformation allows non-linear decision boundaries.
 - By choosing the right \(\phi \), every continuous function can (in principle) be approximated with arbitrary accuracy.
- Disadvantage
 - The error function can in general no longer be minimized in closed form.
 \(\Rightarrow \) Minimization with Gradient Descent

Gradient Descent

- Iterative minimization
 - Start with an initial guess for the parameter values \(w_{kj}^{(0)} \).
 - Move towards a (local) minimum by following the gradient.
- Basic strategies
 - “Batch learning” \(w_{kj}^{(r+1)} = w_{kj}^{(r)} - \eta \frac{\partial E(w)}{\partial w_{kj}} \bigg|_{w^{(r)}} \)
 - “Sequential updating” \(w_{kj}^{(r+1)} = w_{kj}^{(r)} - \eta \frac{\partial E_n(w)}{\partial w_{kj}} \bigg|_{w_n^{(r)}} \)
 where \(E(w) = \sum_{n=1}^{N} E_n(w) \)

Gradient Descent

- Delta rule (=LMS rule)
 \[
 w_{kj}^{(r+1)} = w_{kj}^{(r)} \eta \left(y_k(x_n; w) - t_{kn} \right) \phi_j(x_n)
 = w_{kj}^{(r)} \eta \delta_{kn} \phi_j(x_n)
 \]
 where \(\delta_{kn} = y_k(x_n; w) - t_{kn} \)

 \(\Rightarrow \) Simply feed back the input data point, weighted by the classification error.

Gradient Descent

- Error function
 \[
 E(w) = \sum_{n=1}^{N} E_n(w) = \frac{1}{2} \sum_{n=1}^{N} \left(\sum_{j=1}^{K} w_{kj} \phi_j(x_n) - t_{kn} \right)^2
 \]
- Gradient descent
 \[
 \frac{\partial E_n(w)}{\partial w_{kj}} = \left(\sum_{j=1}^{M} w_{kj} \phi_j(x_n) - t_{kn} \right) \phi_j(x_n)
 = (y_k(x_n; w) - t_{kn}) \phi_j(x_n)
 \]
 where \(y_k(x_n; w) = g(ak) = g \left(\sum_{i=0}^{M} w_{ki} \phi_i(x_n) \right) \)

 \[\frac{\partial E_n(w)}{\partial w_{kj}} = \frac{\partial g(ak)}{\partial w_{kj}} \left(\sum_{i=0}^{M} w_{ki} \phi_i(x_n) \right) \phi_j(x_n) \]
 \[
 w_{kj}^{(r+1)} = w_{kj}^{(r)} - \eta \delta_{kn} \phi_j(x_n)
 \]
 \[
 \delta_{kn} = \frac{\partial g(ak)}{\partial w_{kj}} \left(\sum_{i=0}^{M} w_{ki} \phi_i(x_n) \right)
 \]
Summary: Generalized Linear Discriminants

• Properties
 - General class of decision functions.
 - Nonlinearity $g(\cdot)$ and basis functions ϕ_i allow us to address
 linearly non-separable problems.
 - Shown simple sequential learning approach for parameter
 estimation using gradient descent.
 - Better 2nd order gradient descent approaches available
 (e.g. Newton-Raphson).

• Limitations / Caveats
 - Flexibility of model is limited by curse of dimensionality
 - $g(\cdot)$ and ϕ_i often introduce additional parameters.
 - Models are either limited to lower-dimensional input space
 or need to share parameters.
 - Linearly separable case often leads to overfitting.
 - Several possible parameter choices minimize training error.

Topics of This Lecture

• Fisher’s linear discriminant (FLD)
 - Classification as dimensionality reduction
 - Linear discriminant analysis
 - Multiple discriminant analysis
 - Applications

• Logistic Regression
 - Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
 - Gradient descent
 - Iteratively Reweighted Least Squares

• Note on Error Functions

Classification as Dimensionality Reduction

• Classification as dimensionality reduction
 - We can interpret the linear classification model as a projection
 onto a lower-dimensional space.
 - E.g., take the d-dimensional input vector x and project it down
 to one dimension by applying the function
 $y = w^T x$
 - If we now place a threshold at $y \geq -w_0$, we obtain our standard
 two-class linear classifier.
 - The classifier will have a lower error the better this projection
 separates the two classes.

⇒ New interpretation of the learning problem
 - Try to find the projection vector w that maximizes the class
 separation.

Classifying as Dimensionality Reduction

• Measuring class separation
 - We could simply measure the separation of the class means.
 ⇒ Choose w so as to maximize
 $(m_2 - m_1) = w^T (m_2 - m_1)$

• Problems with this approach
 1. This expression can be made arbitrarily large by increasing $\|w\|_2$.
 ⇒ Need to enforce additional constraint $\|w\|_2 = 1$.
 2. This constrained minimization results in $w \propto (m_2 - m_1)$
 3. The criterion may result in bad separation if the clusters have
 elongated shapes.

Classifying as Dimensionality Reduction

• Two questions
 - How to measure class separation?
 - How to find the best projection (with maximal class separation)?

Fisher’s Linear Discriminant Analysis (FLD)

• Better idea:
 - Find a projection that maximizes the ratio of the between-class
 variance to the within-class variance:
 $J(w) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}$
 with $s_k^2 = \sum_{n \in C_k} (y_n - m_k)^2$
 - Usually, this is written as
 $J(w) = \frac{w^T S_B w}{w^T S_W w}$
 where
 $S_B = (m_2 - m_1) (m_2 - m_1)^T$
 $S_W = \frac{1}{2} \sum_{k=1}^{n} \sum_{n \in C_k} (x_n - m_k) (x_n - m_k)^T$

Image source: C.M. Bishop, 2006
Fisher’s Linear Discriminant Analysis (FLD)

- Maximize distance between classes
- Minimize distance within a class
- Criterion: \(J(w) = w^T S_B w \)
 \[w^T S_W w \]
- The optimal solution for \(w \) can be obtained as:
- Classification function:

Multiple Discriminant Analysis

- Generalization to \(K \) classes
 \[J(W) = \frac{W^T S_B W}{W^T S_W W} \]
- where
 \[W = [w_1, \ldots, w_K] \]
 \[m = \frac{1}{N} \sum_{k=1}^{K} m_k \]
 \[S_B = \sum_{k=1}^{K} \sum_{n \in C_k} (x_n - m_k)(x_n - m_k)^T \]
 \[S_W = \sum_{k=1}^{K} \sum_{n \in C_k} (x_n - m_k)(x_n - m_k)^T \]

Maximizing J(W)

- "Rayleigh quotient" \(\Rightarrow \) Generalized eigenvalue problem
 \[J(W) = \frac{W^T S_B W}{W^T S_W W} \]
 - The columns of the optimal \(W \) are the eigenvectors corresponding to the largest eigenvalues of \(S_B W_i = \lambda_i S_W W_i \)
 - Defining \(v = S_B W \), we get \(\frac{1}{S_W} S_B v = \lambda v \) which is a regular eigenvalue problem.
 - Solve to get eigenvectors of \(v \), then from that of \(w \).
 - For the K-class case we obtain (at most) \(K-1 \) projections. (i.e. eigenvectors corresponding to non-zero eigenvalues.)

What Does It Mean?

- What does it mean to apply a linear classifier?
 - Classifier interpretation
 - The weight vector has the same dimensionality as \(x \).
 - Positive contributions where \(\text{sign}(x_i) = \text{sign}(w_i) \).
 - The weight vector identifies which input dimensions are important for positive or negative classification (large \(|w_i| \)) and which ones are irrelevant (near-zero \(w_i \)).
 - If the inputs \(x \) are normalized, we can interpret \(w \) as a “template” vector that the classifier tries to match. \(w^T x = |w||x| \cos \theta \)

Example Application: Fisherfaces

- Visual discrimination task
 - Training data:
 \(C_1 \): Subjects with glasses
 \(C_2 \): Subjects without glasses
 - Test:
 \(\text{glasses?} \)
 - Take each image as a vector of pixel values and apply FLD.

Fisherfaces: Interpretability

- Resulting weight vector for “Glasses/NoGlasses”
Summary: Fisher’s Linear Discriminant

- Properties
 - Simple method for dimensionality reduction, preserves class discriminability.
 - Can use parametric methods in reduced-dim. space that might not be feasible in original higher-dim. space.
 - Widely used in practical applications.

- Restrictions / Caveats
 - Not possible to get more than \(K - 1 \) projections.
 - FLD reduces the computation to class means and covariances.
 - Implicit assumption that class distributions are unimodal and well-approximated by a Gaussian/hyperellipsoid.

Topics of This Lecture

- Fisher’s linear discriminant (FLD)
 - Classification as dimensionality reduction
 - Linear discriminant analysis
 - Multiple discriminant analysis
 - Applications

- Logistic Regression
 - Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
 - Gradient descent

- Iteratively Reweighted Least Squares

Proportional Discriminative Models

- We have seen that we can write
 \[p(C_1|x) = \sigma(a) \]
 \[= \frac{1}{1 + \exp(-a)} \]

- We can obtain the familiar probabilistic model by setting
 \[a = \ln \frac{p(x|C_1)p(C_1)}{p(x|C_2)p(C_2)} \]

- Or we can use generalized linear discriminant models
 \[a = w^T x \]
 \[\text{or} \]
 \[a = w^T \phi(x) \]

Comparison

- Let’s look at the number of parameters...
 - Assume we have an \(M \)-dimensional feature space \(\phi \).
 - And assume we represent \(p(\phi|C_i) \) and \(p(C_i) \) by Gaussians.
 - How many parameters do we need?
 - For the means: \(2M \)
 - For the covariances: \(M(M+1)/2 \)
 - Together with the class priors, this gives \(M(M+5)/2+1 \) parameters!

- How many parameters do we need for logistic regression?
 \[p(C_1|\phi) = y(\phi) = \sigma(w^T \phi) \]
 - Just the values of \(w \) \(\Rightarrow \) \(M \) parameters.

 \(\Rightarrow \) For large \(M \), logistic regression has clear advantages!

Logistic Sigmoid

- Properties
 - Definition: \(\sigma(a) = \frac{1}{1 + \exp(-a)} \)
 - Inverse: \(a = \ln \left(\frac{\sigma}{1 - \sigma} \right) \) “logit” function

 - Symmetry property: \(\sigma(-a) = 1 - \sigma(a) \)
 - Derivative: \(\frac{d\sigma}{da} = \sigma(1 - \sigma) \)
Let's consider a data set \(\{ \phi_n, t_n \} \) with \(n = 1, \ldots, N \), where \(\phi_n = \phi(x_n) \) and \(t_n \in \{0, 1\} \), \(t = (t_1, \ldots, t_N)^T \).

With \(y_n = p(C|\phi_n) \), we can write the likelihood as

\[
p(t|\phi) = \prod_{n=1}^N y_n^{t_n} (1 - y_n)^{1-t_n}
\]

Define the error function as the negative log-likelihood

\[
E(\phi) = -\ln p(t|\phi) = -\sum_{n=1}^N \{ t_n \ln y_n + (1 - t_n) \ln (1 - y_n) \}
\]

This is the so-called cross-entropy error function.

Logistic Regression

- Let's apply Newton-Raphson for Logistic Regression

\[
\phi = \text{softmax}(\mathbf{W}^T \mathbf{X})
\]

Gradient of the Error Function

- Error function

\[
E(\mathbf{W}) = -\sum_{n=1}^N \{ t_n \ln y_n + (1 - t_n) \ln (1 - y_n) \}
\]

- Gradient

\[
\nabla E(\mathbf{W}) = -\sum_{n=1}^N \{ t_n \frac{\partial y_n}{\partial \mathbf{W}} + (1 - t_n) \frac{\partial y_n}{\partial \mathbf{W}} \}
\]

\[
= -\sum_{n=1}^N \{ t_n \phi_n - (1 - t_n) \phi_n \}
\]

A More Efficient Iterative Method...

- Second-order Newton-Raphson gradient descent scheme

\[
\mathbf{W}^{(r+1)} = \mathbf{W}^{(r)} - \mathbf{H}^{-1} \nabla E(\mathbf{W})
\]

where \(\mathbf{H} = \nabla^2 E(\mathbf{W}) \) is the Hessian matrix, i.e. the matrix of second derivatives.

- Properties
 - Local quadratic approximation to the log-likelihood.
 - Faster convergence.

Newton-Raphson for Least-Squares Estimation

- Let's first apply Newton-Raphson to the least-squares error function:

\[
E(\mathbf{W}) = \frac{1}{2} \sum_{n=1}^N (\mathbf{W}^T \phi_n - t_n)^2
\]

\[
\nabla E(\mathbf{W}) = \sum_{n=1}^N (\mathbf{W}^T \phi_n - t_n) \phi_n = \mathbf{X}^T \mathbf{y} - \mathbf{X}^T \mathbf{t}
\]

\[
\mathbf{H} = \nabla^2 E(\mathbf{W}) = \sum_{n=1}^N \phi_n \phi_n^T = \mathbf{X}^T \mathbf{X}
\]

\[
\phi = \begin{bmatrix} \phi_1 & \cdots & \phi_N \end{bmatrix}
\]

Resulting update scheme:

\[
\mathbf{W}^{(r+1)} = \mathbf{W}^{(r)} - (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{W}^{(r)} - \mathbf{X}^T \mathbf{y})
\]

\[
= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}
\]

Closed-form solution!
Iteratively Reweighted Least Squares

- Update equations
 \[w^{(r+1)} = w^{(r)} - (\Phi^T R \Phi)^{-1} \Phi^T (y - t) \]
 \[= (\Phi^T R \Phi)^{-1} \left\{ \Phi^T R \Phi w^{(r)} - \Phi^T (y - t) \right\} \]
 \[= (\Phi^T R \Phi)^{-1} \Phi^T R z \]
 with \(z = \Phi w^{(r)} - R^{-1} (y - t) \)

- Again very similar form (normal equations)
 - But now with non-constant weighing matrix \(R \) (depends on \(w \)).
 - Need to apply normal equations iteratively.
 \(\Rightarrow \) Iteratively Reweighted Least-Squares (IRLS)

Summary: Logistic Regression

- Properties
 - Directly represent posterior distribution \(y(\phi | C_k) \)
 - Requires fewer parameters than modeling the likelihood + prior.
 - Very often used in statistics.
 - It can be shown that the cross-entropy error function is concave
 - Optimization leads to unique minimum
 - But no closed-form solution exists
 - Iterative optimization (IRLS)
 - Both online and batch optimizations exist
 - There is a multi-class version described in (Bishop Ch.4.3.4).

- Caveat
 - Logistic regression tends to systematically overestimate odds ratios when the sample size is less than ~500.

Topics of This Lecture

- Fisher’s linear discriminant (FLD)
 - Classification as dimensionality reduction
 - Linear discriminant analysis
 - Multiple discriminant analysis
 - Applications

- Logistic Regression
 - Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
 - Gradient descent
 - Iteratively Reweighted Least Squares

- Note on Error Functions

Error Functions

- Ideal Misclassification Error
 - This is what we would like to optimize.
 - But cannot compute gradients here.

- Quadratic Error
 - Easy to optimize, closed-form solutions exist.
 - But not robust to outliers.

- Cross-Entropy Error
 - Minimizer of this error is given by posterior class probabilities.
 - Concave error function, unique minimum exists.
 - But no closed-form solution, requires iterative estimation.

Note on Error Functions

- We have now seen already a number of error functions
 - Ideal misclassification error
 - Quadratic error
 - Cross-entropy error

References and Further Reading

- More information on Linear Discriminant Functions can be found in Chapter 4 of Bishop’s book (in particular Chapter 4.1 - 4.3).