Machine Learning - Lecture 8
Linear and Nonlinear SVMs
18.11.2013

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de/
leibe@vision.rwth-aachen.de

Course Outline
- Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation
- Discriminative Approaches (5 weeks)
 - Linear Discriminant Functions
 - Statistical Learning Theory & SVMs
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns
- Generative Models (4 weeks)
 - Bayesian Networks
 - Markov Random Fields

Recap: Generalization and Overfitting
- Goal: predict class labels of new observations
- Train classification model on limited training set.
- The further we optimize the model parameters, the more the training error will decrease.
- However, at some point the test error will go up again.
 ⇒ Overfitting to the training set!

Recap: Risk
- Empirical risk
 - Measured on the training/validation set
 \[R_{emp}(α) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i; α)) \]
- Actual risk (= Expected risk)
 - Expectation of the error on all data.
 \[R(α) = \int L(y_i, f(x; α))dP_{X,Y}(x, y) \]
 - \(P_{X,Y}(x,y) \) is the probability distribution of \((x,y)\).
 It is fixed, but typically unknown.
 ⇒ In general, we can’t compute the actual risk directly!

Recap: Statistical Learning Theory
- Idea
 - Compute an upper bound on the actual risk based on the empirical risk
 \[R(α) · R_{emp}(α) + ε(N, p^*, h) \]
 - where
 - \(N \): number of training examples
 - \(p^* \): probability that the bound is correct
 - \(h \): capacity of the learning machine (“VC-dimension”)
Recap: Upper Bound on the Risk

- Important result (Vapnik 1979, 1995)
 - With probability (1-?), the following bound holds
 \[
 R(\alpha) - R_{\text{emp}}(\alpha) + \sqrt{\frac{\log(2N/h) + 1 - \log(\eta/4)}{N}}
 \]
 “VC confidence”
 - This bound is independent of \(P_{X,Y}(x,y) \)
 - If we know \(h \) (the VC dimension), we can easily compute the risk bound
 \[
 R(\alpha) - R_{\text{emp}}(\alpha) + \epsilon(N,p^*,h)
 \]

Recap: Structural Risk Minimization

- How can we implement Structural Risk Minimization?
 \[
 R(\alpha) - R_{\text{emp}}(\alpha) + \epsilon(N,p^*,h)
 \]
- Classic approach
 - Keep \(\epsilon(N,p^*,h) \) constant and minimize \(R_{\text{emp}}(\alpha) \).
 - \(\epsilon(N,p^*,h) \) can be kept constant by controlling the model parameters.
- Support Vector Machines (SVMs)
 - Keep \(R_{\text{emp}}(\alpha) \) constant and minimize \(\epsilon(N,p^*,h) \).
 - In fact: \(R_{\text{emp}}(\alpha) = 0 \) for separable data.
 - Control \(\epsilon(N,p^*,h) \) by adapting the VC dimension (controlling the “capacity” of the classifier).

Topics of This Lecture

- Linear Support Vector Machines (Recap)
 - Lagrangian (primal) formulation
 - Dual formulation
 - Discussion
- Linearity non-separable case
 - Soft-margin classification
 - Updated formulation
- Nonlinear Support Vector Machines
 - Nonlinear basis functions
 - The Kernel trick
 - Mercer’s condition
 - Popular kernels
- Applications

Recap: Support Vector Machine (SVM)

- Basic idea
 - The SVM tries to find a classifier which maximizes the margin between pos. and neg. data points.
 - Up to now: consider linear classifiers
 \[w^T x + b = 0 \]
- Formulation as a convex optimization problem
 - Find the hyperplane satisfying
 \[
 \arg\min_{w, b} \frac{1}{2} \|w\|^2
 \]
 - under the constraints
 \[
 t_n (w^T x_n + b) \geq 1 \quad \forall n
 \]
 - based on training data points \(x_n \) and target values \(t_n \in \{-1, 1\} \).

SVM - Lagrangian Formulation

- Find hyperplane minimizing \(\|w\|^2 \) under the constraints
 \[
 t_n (w^T x_n + b) - 1 \geq 0 \quad \forall n
 \]
- Lagrangian formulation
 - Introduce positive Lagrange multipliers: \(a_n \geq 0 \quad \forall n \)
 - Minimize Lagrangian ("primal form")
 \[
 L(w, b, a) = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n \left(t_n (w^T x_n + b) - 1 \right)
 \]
 - I.e., find \(w, b, \) and \(a_n \) such that
 \[
 \frac{\partial L}{\partial w} = 0 \Rightarrow \sum_{n=1}^{N} a_n t_n x_n = 0
 \]
 \[
 \frac{\partial L}{\partial b} = 0 \Rightarrow b = \sum_{n=1}^{N} a_n t_n x_n
 \]

SVM - Lagrangian Formulation

- Lagrangian primal form
 \[
 L_p = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n \left(t_n (w^T x_n + b) - 1 \right)
 \]
 \[
 = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n \left(t_n y(x_n) - 1 \right)
 \]
- The solution of \(L_p \) needs to fulfill the KKT conditions
 - Necessary and sufficient conditions
 \[
 a_n \geq 0
 \]
 \[
 t_n y(x_n) - 1 \geq 0
 \]
 \[
 f(x) \geq 0
 \]
 \[
 a_n \{ t_n y(x_n) - 1 \} = 0
 \]
 \[
 \lambda f(x) = 0
 \]
In practice, it is more robust to average over all support vectors:

\[b = \frac{1}{N_S} \sum_{n \in S} \left(t_n - \sum_{m \in S} a_m t_m x_n^T x_m \right) \]

⇒ Only some of the data points actually influence the decision boundary!

SVM - Dual Formulation

Improving the scaling behavior: rewrite \(L_p \) in a dual form

\[L_p = \frac{1}{2} \| w \|^2 - \sum_{n=1}^{N} a_n t_n (w^T x_n + b) - 1 \]

\[= \frac{1}{2} \| w \|^2 - \sum_{n=1}^{N} a_n t_n w^T x_n - b \sum_{n=1}^{N} a_n + \sum_{n=1}^{N} a_n \]

⇒ Using the constraint \(\sum_{n=1}^{N} a_n t_n = 0 \), we obtain

\[\frac{\partial L_p}{\partial b} = 0 \]

\[L_p = \frac{1}{2} \| w \|^2 - \sum_{n=1}^{N} a_n t_n w^T x_n + \sum_{n=1}^{N} a_n \]

SVM - Solution (Part 1)

- Solution for the hyperplane
 - Computed as a linear combination of the training examples
 \[w = \sum_{n=1}^{N} a_n t_n x_n \]
 - Because of the KKT conditions, the following must also hold
 \[a_n \left(t_n (w^T x_n + b) - 1 \right) = 0 \quad \text{(KKT: } f(x) \geq 0 \text{)} \]
 - This implies that \(a_n > 0 \) only for training data points for which
 \[(w^T x_n + b) - 1 = 0 \]
 - Only some of the data points actually influence the decision boundary!

SVM - Solution (Part 2)

- Solution for the hyperplane
 - To define the decision boundary, we still need to know \(b \).
 - Observation: any support vector \(x_n \), satisfies
 \[t_n f(x_n) = \sum_{m \in S} a_m t_m x_n^T x_m + b = 1 \quad \text{(KKT: } f(x) \geq 0 \text{)} \]
 - Using \(t_n^2 = 1 \), we can derive:
 \[b = t_n - \sum_{m \in S} a_m t_m x_n^T x_m \]
 - In practice, it is more robust to average over all support vectors:
 \[b = \frac{1}{N_S} \sum_{n \in S} \left(t_n - \sum_{m \in S} a_m t_m x_n^T x_m \right) \]

SVM - Support Vectors

- The training points for which \(a_n > 0 \) are called “support vectors”.
- Graphical interpretation:
 - The support vectors are the points on the margin.
 - They define the margin and thus the hyperplane.
 - Robustness to “too correct” points!

SVM - Discussion (Part 1)

- Linear SVM
 - Linear classifier
 - Approximative implementation of the SRM principle.
 - In case of separable data, the SVM produces an empirical risk of zero with minimal value of the VC confidence (i.e. a classifier minimizing the upper bound on the actual risk).
 - SVMs thus have a “guaranteed” generalization capability.
 - Formula as convex optimization problem.
 - Globally optimal solution!
- Primal form formulation
 - Solution to quadratic prog. problem in \(M \) variables is in \(O(M^3) \).
 - Here: \(D \) variables \(\Rightarrow O(D^3) \)
- Problem: scaling with high-dim. data (“curse of dimensionality")
SVM - Dual Formulation

\[L = \frac{1}{2} ||w||^2 - \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_n^T x_m) + \sum_{n=1}^{N} a_n \]

Applying \(\frac{1}{2} ||w||^2 = \frac{1}{2} w^T w \) and again using \(w = \sum_{n=1}^{N} a_n t_n x_n \),

\[\frac{1}{2} w^T w = \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_n^T x_m) \]

Inserting this, we get the Wolfe dual

\[L_d(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_n^T x_m) \]

SVM - Discussion (Part 2)

- Dual form formulation
 - In going to the dual, we now have a problem in \(N \) variables \((a_n) \).
 - Isn’t this worse??? We penalize large training sets!

- However...
 1. SVMs have sparse solutions: \(a_n \neq 0 \) only for support vectors!
 - This makes it possible to construct efficient algorithms
 - e.g. Sequential Minimal Optimization (SMO)
 - Effective runtime between \(O(N) \) and \(O(N^2) \).
 2. We have avoided the dependency on the dimensionality.
 - This makes it possible to work with infinite-dimensional feature spaces by using suitable basis functions \(\phi(x) \).
 - We’ll see that in a few minutes...

SVM - Non-Separable Data

- Non-separable data
 - I.e. the following inequalities cannot be satisfied for all data points
 \[w^T x_n + b \geq +1 \quad \text{for} \quad t_n = +1 \]
 \[w^T x_n + b \leq -1 \quad \text{for} \quad t_n = -1 \]
 - Instead use
 \[w^T x_n + b \geq +1 - \xi_n \quad \text{for} \quad t_n = +1 \]
 \[w^T x_n + b \leq -1 + \xi_n \quad \text{for} \quad t_n = -1 \]
 - with “slack variables” \(\xi_n \geq 0 \) \(\forall n \)

SVM - Soft-Margin Classification

- Slack variables
 - One slack variable \(\xi_n \geq 0 \) for each training data point.

- Interpretation
 - \(\xi_n = 0 \) for points that are on the correct side of the margin.
 - \(\xi_n = |y_n - \phi(x_n)| \) for all other points (linear penalty).
 - We do not have to set the slack variables ourselves!
 - They are jointly optimized together with \(w \).

So Far...

- Only looked at linearly separable case...
 - Current problem formulation has no solution if the data are not linearly separable!
 - Need to introduce some tolerance to outlier data points.
SVM - Non-Separable Data
- **Separable data**
 - Minimize
 \[
 \frac{1}{2} ||w||^2 + C \sum_{n=1}^{N} \xi_n
 \]
- **Non-separable data**
 - Minimize
 \[
 \frac{1}{2} ||w||^2 + \sum_{n=1}^{N} (y_n(w^T x_n) - 1 + \xi_n)
 \]

Trade-off parameter!

SVM - New Primal Formulation
- New SVM Primal: Optimize
 \[
 L_p = \frac{1}{2} ||w||^2 + C \sum_{n=1}^{N} \xi_n - \sum_{n=1}^{N} a_n (y_n(w^T x_n) - 1 + \xi_n)
 \]
 \[
 \text{Constraint:} \quad t_n \geq 1 - \xi_n
 \]
 \[
 \xi_n \geq 0
 \]
 \[
 \lambda \geq 0
 \]

KKT conditions
- \(a_n \geq 0\)
- \(\mu_n \geq 0\)
- \(\xi_n \geq 0\)
- \(f(x) \geq 0\)
- \(\lambda f(x) = 0\)

SVM - New Dual Formulation
- New SVM Dual: Maximize
 \[
 L_d(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_n^T x_m)
 \]
 under the conditions
 \[
 0 \cdot a_n \cdot C
 \]
 \[
 \sum_{n=1}^{N} a_n t_n = 0
 \]
 \[
 a_n \geq 0
 \]
 \[
 \mu_n \geq 0
 \]
 \[
 \xi_n \geq 0
 \]
 \[
 f(x) \geq 0
 \]
 \[
 \lambda f(x) = 0
 \]

This is all that changed!

Interpretation of Support Vectors
- Those are the hard examples!
- We can visualize them, e.g. for face detection

SVM - New Solution
- Solution for the hyperplane
 \[
 w = \sum_{n=1}^{N} a_n t_n x_n
 \]
 \[
 b = \frac{1}{N_M} \sum_{m \in M} \left(t_m - \sum_{m \in M} a_m t_m x_m^T x_m \right)
 \]
- Again sparse solution: \(a_n = 0\) for points outside the margin.
 \[
 \Rightarrow \text{The slack points with } \xi_n > 0 \text{ are now also support vectors!}
 \]
- Compute \(b\) by averaging over all \(N_M\) points with \(0 < a_n < C\):
 \[
 b = \frac{1}{N_M} \sum_{m \in M} \left(t_m - \sum_{m \in M} a_m t_m x_m^T x_m \right)
 \]

So Far...
- Only looked at linearly separable case...
 - Current problem formulation has no solution if the data are not linearly separable!
 - Need to introduce some tolerance to outlier data points.
 - Slack variables.
- Only looked at linear decision boundaries...
 - This is not sufficient for many applications.
 - Want to generalize the ideas to non-linear boundaries.
Nonlinear SVM
- Linear SVMs
 - Datasets that are linearly separable with some noise work well:
 - But what are we going to do if the dataset is just too hard?
 - How about... mapping data to a higher-dimensional space:

Another Example
- Non-separable by a hyperplane in 2D

Another Example
- Separable by a surface in 3D

Nonlinear SVM
- General idea: The original input space can be mapped to some higher-dimensional feature space where the training set is separable:

What Could This Look Like?
- Example: Mapping to polynomial space, \(x, y \in \mathbb{R}^2 \):
 \[\phi(x) = \begin{bmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix} \]
 - Motivation: Easier to separate data in higher-dimensional space.
 - But wait - isn’t there a big problem?
 - How should we evaluate the decision function?
Problem with High-dim. Basis Functions

- Problem
 - In order to apply the SVM, we need to evaluate the function
 \[y(x) = w^T \phi(x) + b \]
 - Using the hyperplane, which is itself defined as
 \[w = \sum_{n=1}^{N} a_n t_n \phi(x_n) \]

\[\Rightarrow \text{What happens if we try this for a million-dimensional feature space } \phi(x)? \]

- Oh-oh...

Solution: The Kernel Trick

- Important observation
 - \(\phi(x) \) only appears in the form of dot products \(\phi(x)^T \phi(y) \):
 \[y(x) = w^T \phi(x) + b \]
 \[= \sum_{n=1}^{N} a_n t_n \phi(x_n)^T \phi(x) + b \]
 - Trick: Define a so-called kernel function \(k(x,y) = \phi(x)^T \phi(y) \).
 - Now, in place of the dot product, use the kernel instead:
 \[y(x) = \sum_{n=1}^{N} a_n t_n k(x_n, x) + b \]
 - The kernel function \(\text{implicitly} \) maps the data to the higher-dimensional space (without having to compute \(\phi(x) \) explicitly!)

Back to Our Previous Example...

- 2nd degree polynomial kernel:
 \[\phi(x)^T \phi(y) = \begin{bmatrix} x_1^2 & \sqrt{2}x_1x_2 \\ x_2^2 & \sqrt{2}y_1y_2 \end{bmatrix} \]
 \[= x_1^2y_1^2 + 2x_1x_2y_1y_2 + x_2^2y_2^2 \]
 \[= (x^T y)^2 = k(x,y) \]
 - Whenever we evaluate the kernel function \(k(x,y) = (x^T y)^2 \), we implicitly compute the dot product in the higher-dimensional feature space.

SVMs with Kernels

- Using kernels
 - Applying the kernel trick is easy. Just replace every dot product by a kernel function...
 - ...and we’re done.
 - Instead of the raw input space, we’re now working in a higher-dimensional (potentially infinite-dimensional) space, where the data is more easily separable.

 “Sounds like magic...”

- Wait - does this always work?
 - The kernel needs to define an implicit mapping to a higher-dimensional feature space \(\phi(x) \).
 - When is this the case?

Which Functions are Valid Kernels?

- Mercer’s theorem (modernized version):
 - Every positive definite symmetric function is a kernel
 - Positive definite symmetric functions correspond to a positive definite symmetric Gram matrix:

\[
K = \begin{bmatrix}
\phi(x_1; x_1) & \phi(x_1; x_2) & \cdots & \phi(x_1; x_N) \\
\phi(x_2; x_1) & \phi(x_2; x_2) & \cdots & \phi(x_2; x_N) \\
\vdots & \vdots & \ddots & \vdots \\
\phi(x_N; x_1) & \phi(x_N; x_2) & \cdots & \phi(x_N; x_N)
\end{bmatrix}
\]

\[\text{(positive definite \(\Rightarrow \) all eigenvalues are > 0)} \]

Recap: Kernels Fulfilling Mercer’s Condition

- Polynomial kernel
 \[k(x, y) = (x^T y + 1)^p \]

- Radial Basis Function kernel
 \[k(x, y) = \exp \left\{ -\frac{(x - y)^2}{2\sigma^2} \right\} \]
 e.g. Gaussian

- Hyperbolic tangent kernel
 \[k(x, y) = \tanh(\langle x^T y \rangle) \]
 e.g. Sigmoid

(And many, many more...)

Actually, that was wrong in the original SVM paper...
Example: Bag of Visual Words Representation

- General framework in visual recognition
 - Create a codebook (vocabulary) of prototypical image features
 - Represent images as histograms over codebook activations
 - Compare two images by any histogram kernel, e.g. χ² kernel

 \[k_\chi(h, h') = \exp \left(-\frac{1}{\gamma} \frac{(h - h')^2}{h + h'} \right) \]

VC Dimension for Polynomial Kernel

- Polynomial kernel of degree \(p \):
 \[k(x, y) = (x^T y)^p \]
 - Dimensionality of \(\mathcal{H} \):
 \[\dim(\mathcal{H}) = \frac{D + p - 1}{p} \]
 - Example:
 \[D = 16 \times 16 = 256 \]
 \[p = 4 \]
 \[\dim(\mathcal{H}) = 183.181.376 \]
 - The hyperplane in \(\mathcal{H} \) then has VC-dimension
 \[\dim(\mathcal{H}) + 1 \]

VC Dimension for Gaussian RBF Kernel

- Radial Basis Function:
 \[k(x, y) = \exp \left\{ -\frac{(x - y)^2}{2\sigma^2} \right\} \]
 - Intuitively
 - If we make the radius of the RBF kernel sufficiently small, then each data point can be associated with its own kernel.
 - However, this also means that we can get finite VC-dimension if we set a lower limit to the RBF radius.

VC Dimension for Gaussian RBF Kernel

- Radial Basis Function:
 \[k(x, y) = \exp \left\{ -\frac{(x - y)^2}{2\sigma^2} \right\} \]
 - In this case, \(\mathcal{H} \) is infinite dimensional!
 \[\exp(x) = 1 + x + \frac{x^2}{2!} + \ldots \]
 - Since only the kernel function is used by the SVM, this is no problem.
 - The hyperplane in \(\mathcal{H} \) then has VC-dimension
 \[\dim(\mathcal{H}) + 1 = \infty \]

Nonlinear SVM - Dual Formulation

- SVM Dual: Maximize
 \[L_\xi(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_m k(x_m, x_n) \]
 under the conditions
 \[0 \cdot a_n \cdot C = 0 \]
 \[\sum_{n=1}^{N} a_n t_n = 0 \]
- Classify new data points using
 \[y(x) = \sum_{n=1}^{N} a_n t_n k(x_n, x) + b \]

Example: RBF Kernels

- Decision boundary on toy problem
But... but... but...

- Don’t we risk overfitting with those enormously high-dimensional feature spaces?
 - No matter what the basis functions are, there are really only up to \(N \) parameters: \(a_1, a_2, \ldots, a_N \) and most of them are usually set to zero by the maximum margin criterion.
 - The data effectively lives in a low-dimensional subspace of \(\mathcal{H} \).

- What about the VC dimension? I thought low VC-dim was good (in the sense of the risk bound)?
 - Yes, but the maximum margin classifier “magically” solves this.
 - Reason (Vapnik): by maximizing the margin, we can reduce the VC-dimension.
 - Empirically, SVMs have very good generalization performance.

Theoretical Justification for Maximum Margins

- Vapnik has proven the following:
 - The class of optimal linear separators has VC dimension \(h \) bounded from above as
 \[
 h \leq \min \left\{ \frac{D^2}{\rho^2}, m_0 \right\} + 1
 \]
 - where \(\rho \) is the margin, \(D \) is the diameter of the smallest sphere that can enclose all of the training examples, and \(m_0 \) is the dimensionality.
 - Intuitively, this implies that regardless of dimensionality \(m_0 \) we can minimize the VC dimension by maximizing the margin \(\rho \).
 - Thus, complexity of the classifier is kept small regardless of dimensionality.

Summary: SVMs

- Properties
 - Empirically, SVMs work very, very well.
 - SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.
 - SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, sequences, relational data) by designing kernel functions for such data.
 - SVM techniques have been applied to a variety of other tasks – e.g. SV Regression, One-class SVMs, ...
 - The kernel trick has been used for a wide variety of applications. It can be applied wherever dot products are in use – e.g. Kernel PCA, kernel FLD, ...
 - Good overview, software, and tutorials available on http://www.kernel-machines.org/

- Limitations
 - How to select the right kernel?
 - Still something of a black art...
 - How to select the kernel parameters?
 - (Massive) cross-validation.
 - Usually, several parameters are optimized together in a grid search.
 - Solving the quadratic programming problem
 - Standard QP solvers do not perform too well on SVM task.
 - Dedicated methods have been developed for this, e.g. SMO.
 - Speed of evaluation
 - Evaluating \(g(x) \) scales linearly in the number of SVs.
 - Too expensive if we have a large number of support vectors.
 - There are techniques to reduce the effective SV set.
 - Training for very large datasets (millions of data points)
 - Stochastic gradient descent and other approximations can be used

Topics of This Lecture

- Linear Support Vector Machines (Recap)
 - Lagrangian (primal) formulation
 - Dual formulation
 - Discussion
- Linearly non-separable case
 - Soft-margin classification
 - Updated formulation
- Nonlinear Support Vector Machines
 - Nonlinear basis functions
 - The Kernel trick
 - Mercer’s condition
 - Popular kernels
- Applications
Example Application: Text Classification

- Problem:
 - Classify a document in a number of categories

- Representation:
 - “Bag-of-words” approach
 - Histogram of word counts (on learned dictionary)
 - Very high-dimensional feature space (~10,000 dimensions)
 - Few irrelevant features

- This was one of the first applications of SVMs
 - T. Joachims (1997)

Example Application: OCR

- Handwritten digit recognition
 - US Postal Service Database
 - Standard benchmark task for many learning algorithms

- Results
 - Almost no overfitting with higher-degree kernels.

Historical Importance

- USPS benchmark
 - 2.5% error: human performance

- Different learning algorithms
 - 16.2% error: Decision tree (C4.5)
 - 5.9% error: (best) 2-layer Neural Network
 - 5.1% error: LeNet 1 (massively hand-tuned) 5-layer network

- Different SVMs
 - 4.0% error: Polynomial kernel (p=3, 274 support vectors)
 - 4.1% error: Gaussian kernel (σ=0.3, 291 support vectors)
Example Application: Object Detection

- Sliding-window approach

 - E.g. histogram representation (HOG)
 - Map each grid cell in the input window to a histogram of gradient orientations.
 - Train a linear SVM using training set of pedestrian vs. non-pedestrian windows.

Example Application: Pedestrian Detection

Many Other Applications

- Lots of other applications in all fields of technology
 - OCR
 - Text classification
 - Computer vision
 - ...
 - High-energy physics
 - Monitoring of household appliances
 - Protein secondary structure prediction
 - Design on decision feedback equalizers (DFE) in telephony

(Detailed references in Schoelkopf & Smola, 2002, pp. 221)

You Can Try It At Home...

- Lots of SVM software available, e.g.
 - svmlight (http://svmlight.joachims.org/)
 - Command-line based interface
 - Source code available in C
 - Interfaces to Python, MATLAB, Perl, Java, DLL,
 - libsvm (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
 - Library for inclusion with own code
 - C++ and Java sources
 - Interfaces to Python, R, MATLAB, Perl, Ruby, Weka, C+.NET,
 - Both include fast training and evaluation algorithms, support for multi-class SVMs, automated training and cross-validation, ...
 - Easy to apply to your own problems!

References and Further Reading

- More information on SVMs can be found in Chapter 7.1 of Bishop’s book. You can also look at Schölkopf & Smola (some chapters available online).

 Christopher M. Bishop
 Pattern Recognition and Machine Learning
 Springer, 2006

 B. Schölkopf, A. Smola
 Learning with Kernels
 MIT Press, 2002
 http://www.learning-with-kernels.org/

- A more in-depth introduction to SWMs is available in the following tutorial: