Recap: Stacking

- **Idea**
 - Learn L classifiers (based on the training data)
 - Find a meta-classifier that takes as input the output of the L first-level classifiers.

- **Example**
 - Learn L classifiers with leave-one-out.
 - Interpret the prediction of the L classifiers as L-dimensional feature vector.
 - Learn "level-2" classifier based on the examples generated this way.

Recap: Bayesian Model Averaging

- **Model Averaging**
 - Suppose we have H different models $h = 1, \ldots, H$ with prior probabilities $p(h)$.
 - Construct the marginal distribution over the data set
 \[
 p(X) = \sum_{h=1}^{H} p(X|h)p(h)
 \]
 - Average error of committee
 \[
 E_{COM} = \frac{1}{M} E_{AV}
 \]
 - This suggests that the average error of a model can be reduced by a factor of M simply by averaging M versions of the model!
 - Unfortunately, this assumes that the errors are all uncorrelated. In practice, they will typically be highly correlated.

Recap: Boosting (Schapire 1989)

- **Algorithm**: (3-component classifier)
 1. Sample $N_1 < N$ training examples (without replacement) from training set D to get set D_1.
 - Train weak classifier C_1 on D_1.
 2. Sample $N_2 < N$ training examples (without replacement), half of which were misclassified by C_1, to get set D_2.
 - Train weak classifier C_2 on D_2.
 3. Choose all data in D on which C_1 and C_2 disagree to get set D_3.
 - Train weak classifier C_3 on D_3.
 4. Get the final classifier output by majority voting of C_1, C_2, and C_3.
 (Recursively apply the procedure on C_1 to C_3)

Topics of This Lecture

- **Recap: AdaBoost**
 - Algorithm
 - Analysis
 - Extensions
- **Analysis**
 - Comparing Error Functions
- **Applications**
 - AdaBoost for face detection
- **Decision Trees**
 - CART
 - Impurity measures, Stopping criterion, Pruning
 - Extensions, Issues
 - Historical development: ID3, C4.5
Recap: AdaBoost - “Adaptive Boosting”

- **Main idea** [Freund & Schapire, 1996]
 - Instead of resampling, reweight misclassified training examples.
 - Increase the chance of being selected in a sampled training set.
 - Or increase the misclassification cost when training on the full set.

- **Components**
 - $h_m(x)$: “weak” or base classifier
 - Condition: <50% training error over any distribution
 - $H(x)$: “strong” or final classifier

- **AdaBoost**
 - Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers:
 $$ H(x) = \text{sign} \left(\sum_{m=1}^{M} \alpha_m h_m(x) \right) $$

Recap: AdaBoost - Algorithm

1. **Initialization:** Set $w_1(n) = \frac{1}{N}$ for $n = 1, \ldots, N$.
2. For $m = 1, \ldots, M$ iterations
 a) Train a new weak classifier $h_m(x)$ using the current weighting coefficients $W(m)$ by minimizing the weighted error function $J_m = \frac{1}{N} \sum_{n=1}^{N} w(m)_n I(h_m(x)_n \neq t_n)$
 b) Estimate the weighted error of this classifier on X:
 $$ e_m = \frac{1}{N} \sum_{n=1}^{N} w(m)_n I(h_m(x)_n \neq t_n) $$
 c) Calculate a weighting coefficient for $h_m(x)$:
 $$ \alpha_m = \ln \left(\frac{1}{e_m} \right) $$
 d) Update the weighting coefficients:
 $$ w(m+1)_n = w(m)_n \exp \left(\alpha_m I(h_m(x)_n \neq t_n) \right) $$

Topics of This Lecture

- Recap: AdaBoost
 - Algorithm
 - Analysis
 - Extensions
- **Analysis**
 - Comparing Error Functions
- Applications
 - AdaBoost for face detection
- Decision Trees
 - CART
 - Impurity measures, Stopping criterion, Pruning
 - Extensions, Issues
 - Historical development: ID3, C4.5

AdaBoost - Analysis

- Result of this derivation
 - We now know that AdaBoost minimizes an exponential error function in a sequential fashion.
 - This allows us to analyze AdaBoost’s behavior in more detail.
 - In particular, we can see how robust it is to outlier data points.

Recap: Error Functions

- **Ideal misclassification error function (black)**
 - This is what we want to approximate.
 - Unfortunately, it is not differentiable.
 - The gradient is zero for misclassified points.
 - We cannot minimize it by gradient descent.

- **Squared error used in Least-Squares Classification**
 - Very popular, leads to closed-form solutions.
 - However, sensitive to outliers due to squared penalty.
 - Penalizes “too correct” data points
 - Generally does not lead to good classifiers.
Recap: Error Functions

- "Hinge error" used in SVMs
 - Zero error for points outside the margin ($z > 1$) ⇒ sparsity
 - Linear penalty for misclassified points ($z < 1$) ⇒ robustness
 - Not differentiable around $z = 1$ ⇒ Cannot be optimized directly.

Discussion: AdaBoost Error Function

- Exponential error used in AdaBoost
 - No penalty for too correct data points, fast convergence.
 - Disadvantage: exponential penalty for large negative values!
 - Less robust to outliers or misclassified data points!

Discussion: Other Possible Error Functions

- Cross-entropy error used in Logistic Regression
 - Similar to exponential error for $z > 0$.
 - Only grows linearly with large negative values of z.
 - Make AdaBoost more robust by switching to this error function.
 ⇒ "GentleBoost"

Summary: AdaBoost

- Properties
 - Simple combination of multiple classifiers.
 - Easy to implement.
 - Can be used with many different types of classifiers.
 - None of them needs to be too good on its own.
 - In fact, they only have to be slightly better than chance.
 - Commonly used in many areas.
 - Empirically good generalization capabilities.

- Limitations
 - Original AdaBoost sensitive to misclassified training data points.
 - Improvement by GentleBoost.
 - Single-class classifier
 - Multiclass extensions available

Topics of This Lecture

- Recap: AdaBoost
 - Algorithm
 - Analysis
 - Extensions

- Analysis
 - Comparing Error Functions

- Applications
 - AdaBoost for face detection

- Decision Trees
 - CART
 - Impurity measures, Stopping criterion, Pruning
 - Extensions, Issues
 - Historical development: ID3, C4.5
Example Application: Face Detection

- Frontal faces are a good example of a class where global appearance models + a sliding window detection approach fit well:
 - Regular 2D structure
 - Center of face almost shaped like a "patch"/window

- Now we'll take AdaBoost and see how the Viola-Jones face detector works.

Feature extraction

"Rectangular" filters

Feature output is difference between adjacent regions

Efficiently computable with integral image: any sum can be computed in constant time
Avoid scaling images → scale features directly for same cost

Large Library of Filters

Considering all possible filter parameters: position, scale, and type:
180,000+ possible features associated with each 24 x 24 window

Use AdaBoost both to select the informative features and to form the classifier

AdaBoost for Feature+Classifier Selection

- Want to select the single rectangle feature and threshold that best separates positive (faces) and negative (non-faces) training examples, in terms of weighted error.

Outputs of a possible rectangle feature on faces and non-faces.

Resulting weak classifier:

For next round, reweight the examples according to errors, choose another filter/threshold combo.

AdaBoost for Efficient Feature Selection

- Image features = weak classifiers
- For each round of boosting:
 - Evaluate each rectangle filter on each example
 - Sort examples by filter values
 - Select best threshold for each filter (min error)
 - Sorted list can be quickly scanned for the optimal threshold
 - Select best filter/threshold combination
 - Weight on this features is a simple function of error rate
 - Reweight examples

Viola-Jones Face Detector: Results

Viola-Jones Face Detector: Results

References and Further Reading

- More information on Classifier Combination and Boosting can be found in Chapters 14.1-14.3 of Bishop’s book.

 Christopher M. Bishop
 Pattern Recognition and Machine Learning
 Springer, 2006

- A more in-depth discussion of the statistical interpretation of AdaBoost is available in the following paper:

Decision Trees

- Very old technique
 - Origin in the 60s, might seem outdated.

- But...
 - Can be used for problems with nominal data
 - E.g. attributes color c (red, green, blue) or weather w (sunny, rainy).
 - Discrete values, no notion of similarity or even ordering.

 - Interpretable results
 - Learned trees can be written as sets of if-then rules.

 - Methods developed for handling missing feature values.

 - Successfully applied to broad range of tasks
 - E.g. Medical diagnosis
 - E.g. Credit risk assessment of loan applicants

 - Some interesting novel developments building on top of them...

Topics of This Lecture

- Recap: AdaBoost
 - Algorithm
 - Analysis
 - Extensions

- Analysis
 - Comparing Error Functions

- Applications
 - AdaBoost for face detection

- Decision Trees
 - CART
 - Impurity measures, Stopping criterion, Pruning
 - Extensions, Issues
 - Historical development: ID3, C4.5

Decision Trees

- Example:
 - “Classify Saturday mornings according to whether they’re suitable for playing tennis.”
Decision Trees

- **Elements**
 - Each node specifies a test for some attribute.
 - Each branch corresponds to a possible value of the attribute.

- **Assumption**
 - Links must be mutually distinct and exhaustive
 - I.e., one and only one link will be followed at each step.

- **Interpretability**
 - Information in a tree can be rendered as logical expressions.
 - In our example:
 \[
 (\text{Outlook} = \text{Sunny} \land \text{Humidity} = \text{Normal}) \\
 \lor (\text{Outlook} = \text{Overcast}) \\
 \lor (\text{Outlook} = \text{Rain} \land \text{Wind} = \text{Weak})
 \]

Training Decision Trees

- Finding the optimal decision tree is NP-hard...
- Common procedure: Greedy top-down growing
 - Start at the root node.
 - Progressively split the training data into smaller and smaller subsets.
 - In each step, pick the best attribute to split the data.
 - If the resulting subsets are pure (only one label) or if no further attribute can be found that splits them, terminate the tree.
 - Else, recursively apply the procedure to the subsets.

CART Framework

- Six general questions
 1. Binary or multi-valued problem? I.e., how many splits should there be at each node?
 2. Which property should be tested at a node? I.e., how to select the query attribute?
 3. When should a node be declared a leaf? I.e., when to stop growing the tree?
 4. How can a grown tree be simplified or pruned? Goal: reduce overfitting.
 5. How to deal with impure nodes? I.e., when the data itself is ambiguous.
 6. How should missing attributes be handled?

CART - 1. Number of Splits

- Each multi-valued tree can be converted into an equivalent binary tree:

CART - 2. Picking a Good Splitting Feature

- Goal
 - Want a tree that is as simple/small as possible (Occam’s razor).
 - But: Finding a minimal tree is an NP-hard optimization problem.

- Greedy top-down search
 - Efficient, but not guaranteed to find the smallest tree.
 - Seek a property \(T \) at each node \(N \) that makes the data in the child nodes as pure as possible.
 - For formal reasons more convenient to define impurity \(i(N) \), Several possible definitions explored.
CART - Impurity Measures

- **Misclassification impurity**
 \[i(N) = 1 - \max_j p(C_j|N) \]

 "Fraction of the training patterns in category \(C_j \) that end up in node \(N \)."

- **Gini impurity (variance impurity)**
 \[i(N) = \sum_{i \neq j} p(C_i|N)p(C_j|N) \]

 \[= \frac{1}{2} - \sum_j p^2(C_j|N) \]

 "Expected error rate at node \(N \) if the category label is selected randomly."

CART - Impurity Measures

- **Entropy impurity**
 \[i(N) = -\sum_j p(C_j|N) \log_2 p(C_j|N) \]

 "Reduction in entropy = gain in information."

CART - 2. Picking a Good Splitting Feature

- **Application**
 - Select the query that decreases impurity the most
 \[\Delta i(N) = i(N) - P_k i(N_k) - (1 - P_k) i(N_{\bar{k}}) \]

- **Multiway generalization (gain ratio impurity):**
 - Maximize
 \[\Delta i(s) = \frac{1}{Z} \left(i(N) - \sum_{k=1}^K P_k i(N_k) \right) \]
 - where the normalization factor ensures that large \(K \) are not inherently favored:
 \[Z = -\sum_{k=1}^K P_k \log_2 P_k \]

CART - Picking a Good Splitting Feature

- **For efficiency, splits are often based on a single feature**
 - "Monothetic decision trees"

- **Evaluating candidate splits**
 - Nominal attributes: exhaustive search over all possibilities.
 - Real-valued attributes: only need to consider changes in label.
 - Only need to test candidate splits where \(\text{label}(x_i) \neq \text{label}(x_{i+1}) \).
CART - 3. When to Stop Splitting

- **Problem: Overfitting**
 - Learning a tree that classifies the training data perfectly may not lead to the tree with the best generalization to unseen data.
 - Reasons
 - Noise or errors in the training data.
 - Poor decisions towards the leaves of the tree that are based on very little data.
- **Typical behavior**
 - Accuracy on training data is high,
 - Accuracy on test data is lower.

Accuracy vs. Hypothesis Complexity

CART - Overfitting Prevention (Pruning)

- Two basic approaches for decision trees
 - **Prepruning:** Stop growing tree as some point during top-down construction when there is no longer sufficient data to make reliable decisions.
 - **Postpruning:** Grow the full tree, then remove subtrees that do not have sufficient evidence.
- **Label leaf resulting from pruning with the majority class of the remaining data, or a class probability distribution.**

\[C_N = \arg\max_k p(C_k | N) \]

CART - 4. (Post-)Pruning

- **Stopped splitting often suffers from “horizon effect”**
 - Decision for optimal split at node \(N \) is independent of decisions at descendant nodes.
 - Might stop splitting too early.
 - Stopped splitting biases learning algorithm towards trees in which the greatest impurity reduction is near the root node.
- **Often better strategy**
 - Grow tree fully (until leaf nodes have minimum impurity).
 - Then prune away subtrees whose elimination results only in a small increase in impurity.
- **Benefits**
 - Avoids the horizon effect.
 - Better use of training data (no hold-out set for cross-validation).

(Post-)Pruning Strategies

- **Common strategies**
 - **Merging leaf nodes**
 - Consider pairs of neighboring leaf nodes.
 - If their elimination results only in small increase in impurity, prune them.
 - Procedure can be extended to replace entire subtrees with leaf node directly.
 - **Rule-based pruning**
 - Each leaf has an associated rule (conjunction of individual decisions).
 - Full tree can be described by list of rules.
 - Can eliminate irrelevant preconditions to simplify the rules.
 - Can eliminate rules to improve accuracy on validation set.
 - Advantage: can distinguish between the contexts in which the decision rule at a node is used, or can prune them selectively.

Decision Trees - Handling Missing Attributes

- **During training**
 - Calculate impurities at a node using only the attribute information present.
 - E.g. 3-dimensional data, one point is missing attribute \(x_a \)
 - Compute possible splits on \(x_a \) using all \(N \) points.
 - Compute possible splits on \(x_a \) using \(N-1 \) non-deficient points.
 - Choose split which gives greatest reduction in impurity.
- **During test**
 - Cannot handle test patterns that are lacking the decision attribute!
 - In addition to primary split, store an ordered set of surrogate splits that try to approximate the desired outcome based on different attributes.
Decision Trees - Feature Choice

- Best results if proper features are used
 - Preprocessing to find important axes often pays off.

Decision Trees - Non-Uniform Cost

- Incorporating category priors
 - Often desired to incorporate different priors for the categories.
 - Solution: weight samples to correct for the prior frequencies.

- Incorporating non-uniform loss
 - Create loss matrix λ_{ij}
 - Loss can be incorporated into Gini impurity
 \[i(N) = \sum_{ij} \lambda_{ij} p(C_i)p(C_j) \]

Historical Development

- ID3 (Quinlan 1986)
 - One of the first widely used decision tree algorithms.
 - Intended to be used with nominal (unordered) variables
 - Real variables are first binned into discrete intervals.
 - General branching factor
 - Use gain ratio impurity based on entropy (information gain) criterion.
 - Algorithm
 - Select attribute a that best classifies examples, assign it to root.
 - For each possible value v_i of a:
 - Add new tree branch corresponding to test $a = v_i$.
 - If example_list(v_i) is empty, add leaf node with most common label in example_list(a).
 - Else, recursively call ID3 for the subtree with attributes $A \setminus a$.

Decision Trees - Computational Complexity

- Given
 - Data points $\{x_1, \ldots, x_N\}$
 - Dimensionality D

- Complexity
 - Storage: $O(N)$
 - Test runtime: $O(\log N)$
 - Training runtime: $O(DN^2 \log N)$
 - Most expensive part.
 - Critical step: selecting the optimal splitting point.
 - Need to check D dimensions, for each need to sort N data points.
 - $O(DN \log N)$
Summary: Decision Trees

• Properties
 - Simple learning procedure, fast evaluation.
 - Can be applied to metric, nominal, or mixed data.
 - Often yield interpretable results.

• Limitations
 - Often produce noisy (bushy) or weak (stunted) classifiers.
 - Do not generalize too well.
 - Training data fragmentation:
 - As tree progresses, splits are selected based on less and less data.
 - Overtraining and undertraining:
 - Deep trees: fit the training data well, will not generalize well to new test data.
 - Shallow trees: not sufficiently refined.
 - Stability
 - Trees can be very sensitive to details of the training points.
 - If a single data point is only slightly shifted, a radically different tree may come out!
 - Result of discrete and greedy learning procedure.
 - Expensive learning step
 - Mostly due to costly selection of optimal split.

References and Further Reading

• More information on Decision Trees can be found in Chapters 8.2-8.4 of Duda & Hart.

R.O. Duda, P.E. Hart, D.G. Stork
Pattern Classification
2nd Ed., Wiley-Interscience, 2000